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Motor Systems: Reaching Out and 
Grasping the Molecular Tools 

Two recent studies provide important insights into the organization of 
premotor circuitries, showing that control of highly-specific skilled forelimb 
movements, such as reaching and grasping, requires activation of specific 
subpopulations of neurons in the brainstem and spinal cord. 

Kuikui Zhou1, Daniel M. Wolpert2, 
and Chris I. De Zeeuw1,3 

The control of fine finger movements 
underlying skilled motor behavior 
has been shown to arise from the 
development of direct connections 
from the motor cortex to spinal motor 
neurons, while more global forelimb 
tasks are generally considered to 
depend on the evolutionarily conserved 
descending pathways mediated by 
more indirect routes through the 
brainstem and spinal cord [1,2]. The 
cerebellum, which is superimposed 
on these systems, receives internal 
copies of the motor commands and 
is required for the precise timing of 
motor functions, including that of 
the forelimbs and fingers. To what 
extent specific forms of forelimb 
movements are embedded in specific 
brainstem and spinal cord nuclei has 
remained elusive because of the 
technical difficulties of cell and nuclei 
specific targeting in these regions. 
Taking advantage of the advent of 
new viral and optogenetic techniques, 
two exciting studies from the labs 
of Silvia Arber [3] and Thomas 
Jessell [4] provide strong evidence 
that specific subpopulations of 
neurons in brainstem and spinal cord 
of mice are required for voluntary 

control of reaching and grasping 
movements. 

Where Do We Come From and How to 
Move Forward? 
In the 1960s, Lawrence and Kuypers 
[5,6] showed that the lateral 
descending brainstem pathways in 
both cats and monkeys mediate the 
capacity for independent use of the 
extremities, particularly of the monkey 
hand, while the corticospinal 
pathways, in addition to controlling the 
brainstem, allow the fractionation of 
movements exemplified by the ability 
to independently control the fingers. In 
contrast, the ventromedial brainstem 
pathway forms the basic system by 
which the brain maintains posture 
and integrates body–limb movements, 
such as during locomotion. 

Since the discovery of this overall 
division of the descending brainstem 
pathways more than half a century 
ago, many anatomical details have 
been uncovered (Figure 1), including 
the identification of neurotransmitters 
involved [7,8]. The precise topography 
in these systems has been elusive, 
as many groups of neurons in the 
brainstem and spinal cord are difficult 
to identify by their cyto-architecture, 
and it has been hard to specifically 
target them using cell-specific 
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promoters. However, following the 
revolution in molecular biology, 
over the last decade new expression 
patterns of proteins and gene 
regulating processes have been 
discovered [9], and, equally important, 
new technical approaches to exploit 
these discoveries have been invented. 
For example, viruses that travel 
trans-synaptically at single synapses 
can be transfected into transgenic 
animals and be turned on and off at will 
in specific cell groups, marking and/or 
ablating them by driving expressions of 
fluorescent and/or toxic probes [2,10]. 
Moreover, optogenetics can now be 
used to simultaneously stimulate 
and/or inhibit multiple specific cell 
groups with different wavelengths of 
light, as well as independently control 
the dendritic tree and remote axon 
terminals [11]. 
The Arber and Jessell labs [3,4], 

which are at the forefront of discovering 
genes and proteins relevant for the 
development and function of 
brainstem and spinal cord, have 
now exploited this knowledge by 
applying state-of-the-art viral and 
optogenetic techniques to advance 
our understanding of the precise 
functional topography of the lower 
motor systems. 

Role of MdV in Grasping Types of 
Movements 
Esposito et al. [3] demonstrate that the 
brainstem nucleus medullary reticular 
formation ventral part (MdV), which 
is probably part of the lateral system 
described by Kuypers (Figure 1), 
specifically targets a subgroup of 
forelimb-related spinal interneurons 
and motor neurons that mainly control 
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Figure 1. Pathways involved in skilled 
forelimb movements. 

Spinal motor circuits involved in limb 
movements can be activated directly by the 
corticospinal tract (CST; black) or indirectly 
by the lateral brainstem system (LBS) and me
dial brainstem system (MBS). The LBS com
prises, for example, descending fibers from 
neurons in the red nucleus (RN; red) and the 
ventral part of the nucleus medullary reticular 
formation (MdV; green), whereas the MBS in
cludes descending reticulospinal (dark green), 
tectospinal (orange) and vestibulospinal (cyan 
blue) fibers. Neurons in the MdV receive input 
from the motor cortex (M1), RN, superior colli
culus (SC), cerebellar nuclei (CbN) and reticu
lar formation (RetN), and in turn project mainly 
directly to forelimb (FL)-associated motor 
neurons (MN) and segmental interneurons 
(sIN) in the spinal cord [3]. In contrast, neurons 
in the lateral vestibular nuclei (VeN) innervate 
predominantly, but not exclusively, hindlimb 
(HL)-related MNs and sINs. The MNs and 
sINs controlling forelimb movements also re
ceive prominent input from cervical proprio
spinal neurons (PNs), either directly or indi
rectly via a relay in the lateral reticular 
nucleus (LRN), cerebellar cortex (CbCx) and 
CbN [4]. Note that input from the contralateral 
fastigial nucleus to MdV as well as the periph
eral proprioceptive input to PNs are not 
shown. 

muscles, such as the biceps and 
extensor carpi radialis, that are 
particularly involved in grasping types 
of movement. In contrast to other 
descending pathways, such as 
vestibular projections, this descending 
projection from the MdV turns out to be 
highly specific, in that it only minimally 

projects to motor neurons innervating 
other forelimb muscles, such as the 
triceps, or to the hindlimb regions of 
the spinal cord. Behavioral studies 
following viral-genetic ablation or 
silencing of MdV activity confirmed that 
MdV has a prime role in grasping types 
of movement, both during locomotion 
and a single-pellet reaching task. 
Interestingly, the ability to induce acute 
genetic manipulations allowed the 
authors to show that there was no 
impact of motor learning preceding 
ablation or silencing of MdV neurons; 
that is, lesions equally affected the 
grasping phase of the single-pellet 
reaching task, both with and without 
a preceding motor learning period. 

These data stand in marked 
contrast with the impact of motor 
learning preceding lesions of the 
cerebellar cortex. If, for example, 
cerebellar memories are formed with 
the use of eyeblink conditioning or 
adaptation of the vestibulo-ocular 
reflex just a few hours before lesioning 
the cerebellar cortex, the memories 
can still be retrieved after the lesions, 
presumably by engaging the cerebellar 
nuclei [12–14]. Together, these studies 
indicate that the cerebellar cortex is 
essential for the initial acquisition, 
but not later retrieval, of new motor 
behaviors, whereas MdV is essential 
for both acquisition and retrieval of 
motor behavior, albeit primarily for a 
particular set of forelimb movements. 

Role of V2a-PNs in Reaching Types of 
Movements 
Azim et al. [4] demonstrate that the V2a 
subpopulation of cervical propriospinal 
interneurons (V2a-PNs) specifically 
project to the lateral reticular nucleus, 
which operates as a precerebellar 
relay, as well as to a subgroup of 
forelimb related spinal motor neurons 
that is particularly involved in reaching 
types of movement (Figure 1). This 
bifurcating output raises the possibility 
that V2a-PNs serve as an anatomical 
substrate that allows internal copying 
of the premotor signals, especially as 
they receive their main input from 
reticulospinal neurons, which are 
known for their role in initiation and 
control of movement [15]. The authors 
go a long way towards elucidating 
this potential role by investigating the 
kinematics of different stages of 
forelimb movements, before and after 
manipulating either both outputs of 
V2a-PNs or solely the ascending input 
to the lateral reticular nucleus. In both 

cases, they show that the reaching 
phase was predominantly affected. 
By doing so, the authors provide an 
elegant example of how modern 
optogenetics, in contrast to classical 
electrophysiological stimulation, can 
be used to selectively perturb one 
branch of a neuron’s output while 
leaving the other unaffected. 
Finally, using traditional lesions, 

Azim et al. [4] show that the ascending 
branch of V2a-PNs, which may provide 
internal copy signals to the lateral 
reticular nucleus, operates mainly, 
though not exclusively, through the 
cerebellum. The finding that this 
ascending copy of a descending 
command is involved in generating 
rapid motor responses chimes with a 
recent computational theory termed 
Optimal Feedback Control (OFC), 
which has started to tie together 
previously disparate areas such as 
planning, on-line control, coordination 
and the interaction of effort and noise 
[16]. An elegant aspect of OFC is that 
it avoids the need to specify hard 
constraints on task goals or specify 
a desired trajectory. Instead, OFC 
suggests that the central nervous 
system sets up time-varying feedback 
controllers that continuously convert 
sensory inputs into motor outputs, 
and that these are optimally tuned to 
the goals of the task by trading off 
energy consumption with accuracy 
constraints. Central to such a system is 
the monitoring of the outgoing motor 
command that is used to estimate 
the current state of the body [17,18]. 
The benefits of using copies of the 
motor command rather than just 
sensory input is two-fold: it makes 
state estimates more reliable by 
combining sensory inputs with copies 
of motor outputs, which both carry 
information about state, and it does so 
in a timely manner by using commands 
before sensory feedback could inform 
the CNS of movement, thereby 
mitigating time delays. 
Although the idea of using a copy 

of the descending motor command for 
state estimation is consistent with the 
current study [4], there are now a range 
of possible computational uses of such 
a copy, including as a signal to cancel 
re-afference, thereby filtering sensory 
inputs or as a signal that can drive 
learning. While disrupting any of these 
uses is likely to affect motor control, 
these new molecular techniques are 
promising in being able to dissect 
not only anatomical and functional 
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pathways, but when combined with 
electrophysiological recordings, 
potentially also the computations 
that these pathways embody. 

Future Research on Forelimb 
Movements 
The new studies on the role of MdV 
in grasping [3] and on that of V2a-PN 
in reaching types of movements [4] 
beautifully highlight how deeply 
functional topographical principles 
are embedded in the brain, even when 
these are not directly evident from the 
cyto-architecture and even when they 
are studied in lower mammals like 
mice. As these building blocks are 
now becoming more apparent, the 
obvious question that arises is how 
these different phases of forelimb 
movements, resulting from different 
muscle activities and different control 
centers in the brainstem and spinal 
cord, are coordinated over time. 
Undoubtedly, the olivocerebellar 
system, which is readily accessible 
with genetic approaches using 
cell-specific promoters, plays a pivotal 
role in this coordination [19,20]. By  
showing the diverse viral and 
optogenetic applications as well as the 
precise functional topography for 
forelimb movements, the Arber and 
Jessell labs are acting as guides to the 
main functional questions on 
coordination control, both in terms of 
technical approaches and the concrete 
neuro-anatomical targets in the 

brainstem and spinal cord that 
need to be investigated. 
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Evolution: Hidden at the End of a Very 
Long Branch 

DNA-based methods continue to unveil the diversity and evolutionary origins of 
life on Earth. ‘Next generation’ methods have just solved a long-standing puzzle 
by uncovering previously unseen yet globally distributed diversity within a 
lineage of amitochondriate parasites affecting commercially exploited aquatic 
hosts. This discovery will impact both pure and applied research fields. 
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Mikrocytos mackini is a mysterious known to represent a unique 
microbe that causes Denman Island amitochondriate lineage completely 
disease in Pacific oysters (Crassostrea eluded the scientific literature on 
gigas) on the northwest coast of eukaryotic evolution until last year [3,4]. 
North America. The disease causes Amitochondriate eukaryotic lineages 
mortality in oysters as well as are rare, and have been salient to 
unsightly green lesions which result in empirical studies of early eukaryotic 
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Cavalier-Smith formalized the now 
defunct theory that they comprise a 
primitive eukaryotic group 
(Archezoa) that evolved before the 
endosymbiotic origin of the 
mitochondrion [5]. The fact is 
M. mackini is astoundingly elusive. It 
is among the tiniest eukaryotes 
(Figure 1), has no defining 
morphological features, had no 
known relatives (until now), occurs in 
only one part of the world, is not 
culturable, has an unknown life 
cycle, and disappears for part of the 
year because the disease it causes 
is temperature-dependent 
[6]. ‘Mikrocytos-like’ organisms have 
been reported from various parts of 
the world but the identity of the 
parasites could not be confirmed nor 
the detections repeated (e.g., [7–9]). 
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