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The study of sensorimotor learning has a long history. With the

advent of innovative techniques for studying learning at the

behavioral and computational levels new insights have been

gained in recent years into how the sensorimotor system

acquires, retains, represents, retrieves and forgets

sensorimotor tasks. In this review we highlight recent advances

in the field of sensorimotor learning from a computational

perspective. We focus on studies in which computational

models are used to elucidate basic mechanisms underlying

adaptation and skill acquisition in human behavior.
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Introduction
Motor learning has traditionally focused on how predic-
tive or feedforward control is updated by past errors and
has generally assumed that adaptation is driven by a
single process, that variability is undesirable, and that
learning and control are shaped by a trade-off between
speed and accuracy. Recent research, reviewed below,
has begun to examine how learning shapes both predic-
tive and reactive control mechanisms and has shown that
adaptation involves multiple, interacting processes, that
the motor system tunes variability to the learning task,
and that accuracy is not necessarily gained at the expense
of speed. Here we review developments in the field over
the last two years and refer the reader to recent reviews
that cover earlier periods for additional background [1–3].

Time course of sensorimotor learning
Motor memories can be stored and protected over ex-
tended periods of time and a major focus of sensorimotor
research in recent years has been on the mechanisms of
acquisition, interference and retrieval of such memories.

Recent models propose that trial-by-trial sensorimotor
learning arises from multiple interacting processes which
can be approximated by a fast process which learns
quickly but also decays quickly and a slower process that
learns slowly but also decays slowly [4]. These processes
effectively compete to learn, with early task improvement
dominated by the fast process with the slower process
accounting for the major share of task improvement after
more extensive practice. This model is able to account for
several key features of motor learning including the rather
surprising re-expression of learning that can occur follow-
ing rapid de-adaptation. Recently this model has been
extended by incorporating additional processes with dif-
ferent timescales including an ultra-slow system in prism
adaptation that is only activated by prolonged exposure
on the order of several hundred trials [5].

The evidence for distinct processes with different time-
scales prompted many groups to examine whether these
processes might be linked to distinct forms of learning.
For example, by asking participants to verbally report
where they were aiming while adapting to a visuomotor
rotation, Taylor and colleagues isolated explicit learning
(target relative to aiming location) from implicit learning
(aiming location relative to final reach location) compo-
nents [6!]. An examination of the time courses of these
components suggest that the fast process may correspond
to explicit learning whereas the slow process may corre-
spond to the implicit learning [7]. Moreover, the two state
model, fit to individual participants, can also account for
changes in learning seen with aging [8]. Older adults
exhibit decreased retention in the slow learning process
compared to younger adults. In addition, within the older
group, poor explicit memory was associated with reduced
retention of both the fast and slow processes. These
results suggest that explicit memory resources may relate
to impairments in the both the fast and slow processes,
but that aging effects on the slow process are independent
of explicit memory.

Decay and savings in sensorimotor learning
In accord with state-space models of learning, motor
memories decay, independent of error signals, on a trial
by trial basis. A recent study claimed to provide evidence
that on removal of a perturbation such decay requires the
detection of a context change [9]. However, a subsequent
study has highlighted problems in analysis and design
[10] and shown that decay of motor memory is an implicit
process that does not depend on explicit context-change
detection. However, the amount of decay for a particular
movement has been shown to be linked to the magnitude
of a context change (e.g. change in reach direction). Thus,
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the decay of memory associated with a given reach
direction is greatest for movements made in that direc-
tion, with memories associated with different directions
being protected as they show less decay [11]. Such decay
from trial to trial means that there will always be a residual
error even after extended learning [12]. A study which
amplified viewed errors found that residual error de-
creased when errors were magnified, consistent with
increased trial-to-trial learning [13].

Following adaptation and subsequent deadaptation (i.e.
washout) savings can be observed in the form of faster re-
learning of the same task. Savings have also been exam-
ined without washout, in which case participants can
rapidly recall prior learning after just a few trials. The
latter kind of savings can be observed with as few as
5 trials of initial learning [14]. Washout can have a
dramatic effect on savings. For example, gradual adaption
(of which participants are largely unaware) does not lead
to saving when it is washed out [15] but results in nearly
full saving when it is not washed out [16].

Skills acquisition in sensorimotor learning
Motor learning tasks can be separated into those that
require a recalibration of an existing control policy, such
as when learning to move in a force-field or under a
visuomotor rotation, and skill-learning tasks, requiring
the acquisition of a new control policy, such as when
learning to trace a specified path [17], to generate force
which has a novel relation to muscle activation [18] or to
reach under a visuomotor reversal [19!,20–22]. Teglen
and colleagues [19!] found that whereas performance
decays between successive rotation learning sessions,
gains are observed between successive reversal learning
sessions. Moreover, they found that, in contrast to rotation
learning, in reversal learning accurate performance
requires substantial preparation as reflected by decreasing
error with increasing reaction time (see also [20]). These
authors therefore proposed that such shifts in time-accu-
racy tradeoff and offline gains are hallmarks of skill-
learning task [19!]. Interestingly when learning a large
visuomotor rotation, the expression of learning (i.e. error
reduction) is still positively correlated with prolonged
preparation time [23] and, after learning, savings are
reduced on trials in which participants are only allowed
limited preparation [24]. These results suggest that rota-
tion learning can involve elements of skill learning, and it
may be that participants attempt to implement a new
explicit control policy.

Variability in sensorimotor learning
State-space models initially assumed that learning rates
are fixed. However, several recent studies have shown
that task features can substantially alter the learning rate.
For example, as an applied perturbation becomes more
variable, adaptation rates tend to decrease and, moreover,
feedback gains within a movement tend to increase [25].

Changes in learning rate are accounted for by a model that
suggests the learning rate can be specified for different
error magnitudes, with increased sensitivity to recently
experienced error magnitudes [26]. Variability in the form
of exploration is also important for real world learning and a
recent study showed that natural movement variability is
positively correlated to the speed with which participants
could learn a new motor task [27!!]. Conversely, in some
tasks variability can hinder performance and it has been
shown that participants are able to adapt their strategy
dynamically to minimize the effect of variability on task
performance [28], using so called risk-aware control [29].

Interference in sensorimotor learning
Numerous studies have shown that there is often sub-
stantial interference when people are asked to learn
multiple tasks (e.g. opposing force fields or visuomotor
rotations) even when contextual cues are used to indicate
which task is currently active (e.g. [30]). Recent studies
have started to identify key contextual cues that allow
multiple motor memories to be learned. For example, it
has been shown that the recent state of the limb (i.e. the
lead-in to a movement) can be used to separate motor
memories, associated with adapting the movement, and
that such learning generalizes to novel lead-ins [31,32].
Moreover, follow-through movements can also engage
different motor memories for learning before the fol-
low-through [33]. That is, when different follow throughs
are associated with opposing tasks, interference is dra-
matically reduced compared to the same opposing tasks
without follow through. Moreover, when learning a single
motor task, a consistent follow through led to faster
learning compared to the same task with a variable follow
though. Together these studies suggest that the lead-in
and follow-through to a motor task determines the motor
memory where that skill will be stored. Importantly, most
natural manual tasks, including object manipulation
tasks, involve a sequence of actions that are seamlessly
integrated [34,35], and the above results suggest that
surrounding actions may provide state-based context
allowing different task parameters to be learned with
limited interference.

Reward in sensorimotor learning
Recent studies have also focused on the way punishment
and reward can affect learning. For example, it has been
shown that reward can accelerate motor learning [36] but
that learning is even faster with punishment at the cost of
poorer retention compared to reward [37]. Indeed, the
willingness of subjects to explore, as indicated by move-
ment variability, appears to be at least partially controlled
by recent rewards, with variability decreasing as average
reward increases [38]. A recent study found that partici-
pants who weigh immediate rewards more heavily than
future rewards exhibit faster saccadic eye movements,
presumably because they more strongly value the imme-
diate reward of fixating a target [39]. Moreover, reward
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can act as a motivating influence that can break the typical
speed-accuracy trade-off leading to both faster and more
accurate movements [40!!]. This seemingly paradoxical
result that subjects can increase both their speed and
accuracy can be reconciled by positing that subjects can
exert different levels of control over variability associated
with neural noise. However, this comes at a cost, termed
the cost of control, which can apparently be manipulated
via motivation.

Structures in sensorimotor learning
Motor learning typically involves learning novel kinemat-
ic and dynamic transformations between motor outputs
and sensory inputs that are determined by the structure of
the task. Sensorimotor interactions can share the same
structure (e.g. the kinematics and dynamics of scissors)
but have different parameters (e.g. scissor length and
hinge friction) and one proposal is that learning a struc-
ture facilitates generalization to different tasks that share
the same structure [41]. For example, people who had
never used a computer show less generalization after
visuomotor learning compared to computer users, al-
though just two weeks of computer use removed this
difference [42]. Recently, other accounts of learning and
generalization have been proposed for simple one dimen-
sional tasks whereby participants learn how to respond to
the specific visuomotor errors they experience [26] or
store memories of specific visuomotor rotations [43].
Although these models may account for some simple
features of generalization it is unlikely that they will
be able to explain more complex features of generaliza-
tion that can be accounted for by structural learning [41].

Bayesian processing in sensorimotor learning
The idea that the sensorimotor system uses probabilistic
models to makes inferences about unobserved variables
(e.g. state of the limb or features of a novel task) in line
with Bayesian statistics is well established. For example,
in reaching movements people take into account knowl-
edge of their own variability (i.e. prior) in an attempt to
optimize reach performance. Recent studies have exam-
ined how people represent such priors [44,45] and suggest
that they may be constructed from a mixture of very
simple basis functions [46!!] and that in some situations
there can be substantial mismatches between the repre-
sented prior and true variability [47]. In addition, the prior
used to represent one’s own errors tends to be narrower
than the true distribution of errors and narrower than the
priors applied when simply observing errors without
action, providing a potential explanation of why we tend
to rate our own performance as better than others [48].
When representing priors, the way the mean and the
variability of the prior generalize across space appears to
be dissociated [49]. A key use of Bayesian inference is to
perform model selection to account for data, trading off
model complexity against the fit to the data. A recent
study showed that humans are in accord with such model

selection tending to prefer simpler models (Occam razor)
when accounting for data [50].

Rapid motor responses and sensorimotor
learning
Optimal feedback control (OFC) provides a unifying
principle for motor planning in which a cost of a move-
ment is regarded as a trade off between task success and
effort. OFC involves specifying time-varying gains for a
set of feedback controllers including rapid motor
responses that automatically correct for movement errors
that arise through movement variability or task change
(for a review see [51]). Such rapid motor responses have
been shown to have access to newly acquired knowledge
of object dynamics without the need to experience a
perturbation with the new dynamics [52!]. Moreover,
rapid visuomotor responses can be adapted to have dif-
ferent gains at the same location in space for either
different directions of motion of the hand or different
perturbation directions suggesting a flexible fractionation
of control [53]. Whereas the majority of models focusing
on OFC assume rather simple linear systems, recent work
has started to try and apply new modeling approaches to
capture the nonlinear nature of the true sensorimotor
system [54,55].

Conclusion
Significant recent advances have been made in the field of
sensorimotor control through the continued integration of
computational modeling and experimental work. Here we
have highlighted recent innovative computational work
that provides a strong theoretical foundation for different
aspects of sensorimotor control and learning, and that is
applicable to a wide range of tasks from saccadic eye
movements to complex object manipulation. The excit-
ing challenge ahead is to extend and integrate these
models so as to understand learning and control of real-
world tasks and to link the behavioral and computational
processes to their neural implementation.
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