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eye movements sooner and more 
accurately than novices, supporting 
the idea that learning where and when 
to direct gaze is a key component of 
learning a motor skill [1]. Moreover, 
in the laboratory it has been shown 
that, even in simple visual search 
tasks in which the subject must find a 
visual target among distractors, each 
gaze fixation location is selected to 
maximize information — and hence 
minimize uncertainty — about the 
target location given the sequence of 
previous fixations [2]. 

Similarly, when manipulating an 
object, the type of tactile exploration 
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Although learning a motor skill, 
such as a tennis stroke, feels like a 
unitary experience, researchers who 
study motor control and learning 
break the processes involved into a 
number of interacting components. 
These components can be organized 
into four main groups. First, skilled 
performance requires the effective 
and efficient gathering of sensory 
information, such as deciding where 
and when to direct one’s gaze around 
the court, and thus an important 
component of skill acquisition 
involves learning how best to extract 
task-relevant information. Second, 
the performer must learn key features 
of the task such as the geometry 
and mechanics of the tennis racket 
and ball, the properties of the court 
surface, and how the wind affects the 
ball’s flight. Third, the player needs 
to set up different classes of control 
that include predictive and reactive 
control mechanisms that generate 
appropriate motor commands to 
achieve the task goals, as well as 
compliance control that specifies, 
for example, the stiffness with which 
the arm holds the racket. Finally, the 
successful performer can learn higher-
level skills such as anticipating and 
countering the opponent’s strategy 
and making effective decisions about 
shot selection. In this Primer we shall 
consider these components of motor 
learning using as an example how we 
learn to play tennis.

Information extraction
Movement allows us to determine 
when and where to place our sensory 
receptors — for example, those 
in our retinas or on our fingertips 
— and this allocation of our sensory 
resources can be made in a task-
specific manner. For example, 
when facing a bowler in cricket, 
experienced batters will fixate the 
point at which the bowler releases 
the ball, make a saccade to the 
anticipated bounce point, and then 
use pursuit eye movement to track the 
ball to the contact point with the bat. 
Studies show that experts generate 

Primer depends on the information we 
are trying to extract. Even when 
our sensors receive the same 
sensory input, attentional and other 
constraints mean that the task 
determines which sensory information 
is actually processed. Task-irrelevant 
information is often not perceived, 
leading to the phenomena of 
inattentional blindness [3]. 

Finally, the extraction of information 
does not simply rely on the incoming 
sensory stream but is strongly 
shaped by previous experience. 
This is captured by the Bayesian 
framework in which noisy sensory 
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Figure 1. Structural leaning. 
The two rackets in the upper panel share a similar structure in terms of their geometry and 
dynamics but with different parameter such as length and weight. However, the frisbee has a 
different structure from rackets in terms of both its geometrical and dynamic properties. Struc-
tural learning involves acquiring knowledge of the way in which different objects or tasks share 
similar properties. Parametric learning involves setting the particular parameters for a given 
object or task having identified the structure.
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evidence, such as the visual estimate 
of where a tennis ball is likely to 
bounce, is combined with prior 
knowledge, such as the distribution 
of where the ball has bounced from 
your opponent’s previous shots, to 
produce an optimal (most accurate) 
estimate of the bounce location [4]. 
Therefore, extracting task-relevant 
information is a highly active and 
learned process in which we can 
decide what sensory information to 
sample, what information to process 
from the sample and how to extract 
the information in an efficient, and 
perhaps even optimal, manner.

Learning features of the task
A key component that underpins 
our actions is learning the features 
relevant for a task. For example, 
in tennis we must learn the 
transformation between muscle 

commands and the motion of the 
racket head, learn how to credit 
errors to different aspects of our 
performance and determine how the 
context — such as court surface or 
prevailing wind conditions — affects 
the task.

Structural and parametric learning
The appropriate motor commands in 
tennis will depend on the geometry 
and mechanics of the tennis racket 
that specify the relation between the 
hand’s posture and the location of the 
racket head (termed the kinematic or 
visuomotor transformation) as well as 
the way the racket responds to forces 
and torques applied by the hand 
and ball (dynamic transformation). 
In general, there are two levels we 
can consider when learning such 
transformations. The first, structural 
learning, involves identifying the 

appropriate inputs (for example, 
motor commands or forces) and 
output (for example, racket motion) 
of the system and the form of the 
equations that link the two. For 
example, the set of all rackets 
have common structural properties 
(Figure 1) in terms of their geometrical 
and dynamic (for example, inertia and 
viscosity) features which distinguish 
them from the set of all frisbees or set 
of all scissors, each of which has a 
different structural form. When faced 
with a novel task, the structure of 
the task needs to be learned through 
experience. 

The second level, parametric 
learning, involves learning the 
particular parameter settings for a 
given structure. For example, when 
playing with a particular racket the 
player needs to learn its particular 
mass, weight distribution and 
string compliance. Recent studies 
have shown that, in the laboratory, 
structural learning can be induced by 
exposing participants to a randomly 
varying set of tasks that share a 
common structure but vary in their 
parameter settings [5]. Such structural 
learning dramatically speeds up 
learning of new tasks that share the 
same structure because once the 
learner identifies the structure they 
need only adjust the key parameters 
appropriate for that structure. 
Numerous studies of adaptation to 
relatively simple visual and force 
perturbations report immediate 
and monotonic improvements in 
performance, presumably reflecting 
parametric learning. In other 
more complex tasks, however, no 
improvement is seen during initial 
exposure. It is likely that here there 
is an initial exploratory period during 
which subjects must discover the 
structure of the task before any 
improvement in performance is seen 
[6].

Context and credit assignment
In motor learning, as in all learning, 
context is critical. When we learn 
new dynamics or kinematics, we 
must also be able to link this learning 
to appropriate objects, tasks or 
environments. Studies of motor 
learning have typically looked at the 
role of context by testing how learning 
in one context generalizes to other 
contexts, or whether interference in 
learning, which is often seen between 
motor tasks, can be diminished 
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Figure 2. Control of stiffness. 
By varying the activation of the set of muscles in the arm the stiffness properties of the racket 
can be controlled. The red ellipsoid shows the stiffness with the long axis representing the 
directions of high stiffness. For a smash the racket is held stiff so as to maintain the energy in 
the ball whereas for a drop-shot the stiffness perpendicular to the racket head is low to allow 
any viscosity to absorb the ball’s energy.
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when context is varied. It has been 
shown that arbitrary cues, such as 
the background light color, have 
little effect in helping learning of 
multiple tasks. However, more natural 
contextual cues, such as the visual 
orientation of a manipulated object 
(such as the location of the racket 
head) or whether the two arms act on 
one or two separate objects (such as 
a one versus two armed backhand) 
have strong contextual effects which 
facilitate motor learning [7]. 

Within a given context, an important 
issue in motor learning is the problem 
of credit assignment. If a tennis player 
starts hitting her shots into the net, 
the problem could be that the ball 
is heavy, that the racket strings are 
loose, that there is a oncoming wind, 
that she is fatigued, or that she has 
grown since last she played and 
has not yet adapted. Although the 
immediate response — hit the ball 
harder — may be the same in all of 
these scenarios, correctly crediting 
the problem is essential for shaping 
learning. For example, if the racket 
dynamics have changed, she would 
do well to learn and remember these 
dynamics if she plans to use the 
racket again. Conversely, if she is 
simply tired or it is windy she needs 
to make a temporary adjustment and 
perhaps learn how to calibrate herself 
for the wind or fatigue. Recent work 
has examined such credit assignment 
in terms of allotting the cause of 
errors to changes in the properties of 
the body versus the external world 
including objects such as a held tool 
[8]. Using a Bayesian formulation, the 
model allots the errors in proportion 
to the optimal estimate of where the 
errors arise from, and can account for 
a range of empirical data. 

While credit assignment can 
allocate errors spatially across 
effectors and tools, recent work 
has shown that errors appear to be 
allocated across modules that learn 
with different time scales. Recent 
work on force-field and visuomotor 
adaptation has provided evidence that 
learning involves (at least) two parallel 
processes, a fast process that adapts 
and de-adapts quickly and a slower 
process that adapts and de-adapts 
more gradually [9]. Rapid learning 
mechanisms enable the performer 
to deal with potential short-lived 
perturbations. If these perturbations 
persist over time, then the slower 
mechanisms, which are longer lasting, 

adapt. Just as credit assignment may 
enable learners to identify the causes 
of perturbations, credit assignment 
can also be used to identify the 
longevity of these perturbations. Of 
course, these two characteristics are 
often linked; perturbations due to 
fatigue or the wind are typically brief, 
whereas those due to a new racket 
or bodily change are long lasting. 
Moreover, laboratory studies have 
shown that rather than being fixed, 
the time constants themselves can be 
influenced by the rate of change of 
perturbations previously experienced 
in the task [10].

Classes of control 
We can consider several processes 
that need to function together in order 
to generate the appropriate motor 
command: learning how to modulate 
the compliance of the hand to absorb 
or maintain the energy of the ball; 
how to make appropriate postural 
adjustments to support the stroke; 
and how to use sensory inputs to 
update outgoing commands.

Stiffness, reactive and predictive 

control 
One of the major challenges facing 
motor performance is the large time 
delays inherent in sensorimotor 
feedback loops that limit the rapidity 
with which the motor system can 
respond to sensory events. There are 
three mechanisms, each of which can 
undergo learning, that can alleviate 
the problems of time delays. The first 
mechanism it to vary the compliance 
of the body by co-contraction of 
specific muscles. For example, by 
varying the activations of a set of 
muscles in the arm it is possible to 
control the stiffness at the hand or 
racket head. Not only can people 
scale their overall stiffness (hence 
compliance), they can also shape the 
pattern of stiffness either by varying 
muscle activations or the posture of 
the arm [11]. For example, when using 
a knife to cut into an apple, lateral 
deviations of the blade from the top 
of the apple could lead to the knife 
slipping. In such a task, stability can 
be maintained by stiffening up in the 
axis perpendicular to the blade but 
not increasing stiffness parallel to 
the blade or in the vertical direction. 
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Figure 3. Minimum intervention principle. 
Variation in the azimuth angle of the racket head (left panel) leads to variability in the ball landing 
location (red ellipse) that is distributed within the court and therefore is less deleterious to the task 
(or task-irrelevant for a novice player) compared to variations in elevation angle (right panel) which 
can lead to the ball landing outside the court. The minimum intervention principle suggests that 
azimuthal variation should be corrected for less strongly than elevation variability.
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It has been shown in such tasks that 
subjects are able, albeit to a limited 
extent, to shape their stiffness to 
match the task requirements. 

To return to our tennis example, 
the player can increase stiffness 
perpendicular to the racket head 
when hitting a smash forehand or 
reduce it to take the energy out of 
the ball for a drop-shot (Figure 2). 
By modulating stiffness, the motor 
system can exercise rapid control 
over the response to external 
perturbations. Although stiffness 
can be used to deal with some 
perturbations, it is limited in its 
flexibility and, because it requires 
co-contraction, can be an effortful 
solution to maintaining stability. 
Therefore, in many instances skilled 
performance requires the neural 
processing of sensory information 
during the task.

A second mechanism which can 
alleviate some problems with time 
delays is to use fast reactive feedback 
loops to drive motor responses. While 
the fastest of these, such as the 
mono-synaptic stretch reflex, is not 
modifiable by experience, longer loop 
reflexes that can involve supraspinal 
mechanisms can be modified in a 
task-dependent manner [12]. Thus, 
there is a trade-off across the set 
of sensorimotor responses with the 
fastest being less adaptable and the 
slower being more flexible. Ideally, 
these responses work in concert 

with the most rapid reflexes holding 
the fort waiting for the cavalry in the 
shape of the slower and more task-
dependent responses. Considerable 
work has shown that the gain and 
even sign of these longer reflexes can 
be tuned in a time-dependent manner 
to match properties of the task being 
performed. 

Finally, the third mechanism, 
that of prediction can be used to 
generate the appropriate command 
to compensate for upcoming and 
predictable perturbations. That is, 
motor commands can be generated in 
anticipation of the task requirements 
[13].

How these three mechanisms 
interact during learning has become 
a key question in the field. Most tasks 
involve a combination of all three 
mechanisms, with the contribution 
of each depending on the nature of 
the task. In terms of the interaction 
between stiffness and predictive 
control it has been proposed that 
when errors are large, stiffness 
increases but as the predictive 
component begins to learn, and errors 
reduce, stiffness decreases [14]. 

Optimal feedback control 
There are many examples of tasks, 
ranging from precision lifting to 
locomotion, where the processing 
of sensory information in feedback 
loops is highly task-dependent and 
goal-directed. Indeed, the selection 

of task-appropriate sensorimotor 
feedback mechanisms designed to 
handle errors is part and parcel of 
planning the motor task. Recently, 
the idea of optimally shaping the 
control mechanisms to task goals 
has been formalized in the theoretical 
framework of optimal feedback 
control [15] and this has led to a 
resurgence of interest in feedback 
control. This framework suggests 
that the central nervous system 
sets up feedback controllers that 
continuously convert sensory inputs 
into motor outputs that are optimally 
tuned to the task being performed by 
trading off energy consumption with 
constraints on performance, such as 
accuracy. 

An important feature of the 
model is the concept of minimum 
intervention; that is, setting up 
feedback controllers that only correct 
for variation that is deleterious to the 
task. In the tennis example shown in 
Figure 3, variations in the angle of the 
racket head about the azimuth (left 
panel) have little effect on whether 
the ball will land in the court whereas 
variations about the elevation angle 
(right panel) can threaten the goal 
of landing the ball in the court. 
Therefore, variations in the angle 
about the azimuth do not need to be 
corrected for as strongly as variations 
in elevation. Not only are corrections 
of task-irrelevant errors wasteful, 
they can also generate task-relevant 
errors. A key component of motor 
learning involves exploring the task 
so as to learn which errors threaten 
the goal and need to dealt with via 
sensorimotor feedback mechanisms.

Decisions and strategies 
Historically there has been relatively 
little interaction between work 
in motor control and work in 
cognitive domains such as decision 
making and attention. However, 
as sensorimotor researchers 
have broadened the scope of the 
tasks under study, the distinctions 
among sensorimotor, perceptual, 
and cognitive components of the 
task, including action selection 
and decision making, have become 
blurred. For example, one interesting 
area in which this interaction has 
recently manifest itself is research 
using motor tasks to look at decision 
making. In many explicit cognitive 
tasks, people often make suboptimal 
judgments when faced with a set 
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Figure 4. Optimal aim location depend on variability. 
The closer a shot is aimed to the line, the further it will be from the opponent, making it less likely 
she will be able to return the ball. However, due to variability (yellow area) the closer to the line the 
greater the chance that the ball will land outside the court. There is, therefore, an optimal location 
to aim (red ball) to maximize the chance of winning the point, which trades off the probability of 
the ball landing inside the court with the probability of the ball being successfully returned by the 
opponent. For a novice player (left) who has a large amount of variability the optimal location is 
further inside the court than for an expert (right) who has a small amount of variability.
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of decisions each of which has an 
uncertain outcome. In contrast, when 
people encounter motor variants of 
these tasks, they are often close to 
optimal in their behavior 

For example, when pointing to 
target configurations that have 
different reward and penalty regions, 
it has been shown that subjects are 
able to choose their average pointing 
location so as to minimize the loss 
that accrues through the variability 
of pointing [16]. Such optimization 
applies in tennis where there is a 
trade-off between placing the ball 
far away from your opponent and 
keeping the ball within the court. 
For a novice player, who has a lot 
of variability, it is optimal to aim 
quite far inside the lines to maximize 
the chances of winning the rally 
— getting the ball in and preventing 
the opponent from returning it (Figure 
4 left panel). On the other hand, the 
optimal location for an expert player, 
with less variability, will be closer to 
the lines and further away from the 
opponent (Figure 4 right panel). 

At a higher level, tennis requires 
strategic decisions in multi-player 
interactions. Such decision making 
is typically examined within the 
framework of game theory and 
work in the cognitive domain has 
shown that when people have to 
make decisions based on a set of 
rules, they are typically sub-optimal. 
Recently, classic game theoretic 
problems such as prisoners’ dilemma 
have been examined in the motor 
domain by translating years-in-prison 
into movement effort. In such two-
player motor games, subjects rapidly 
develop near-optimal game-theoretic 
solutions, that is the players adopting 
Nash equilibrium solutions in which 
they choose actions so that neither 
has anything to gain by changing only 
his or her strategy [17]. Such motor 
game-theoretic interactions arise 
naturally, for example, in doubles 
where each player must cooperate 
with their partner while competing 
with their opponents.

Tennis enthusiasts invest 
considerable time, energy, and 
money into trying to improve their 
game. The secret is [to sharpen your] 
game [theory], set [your controllers 
optimally] and match [your sensory 
processing to the task].
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