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Abstract

Sensorimotor learning has been shown to depend on both prior expectations and sensory evidence in a way that is
consistent with Bayesian integration. Thus, prior beliefs play a key role during the learning process, especially when only
ambiguous sensory information is available. Here we develop a novel technique to estimate the covariance structure of the
prior over visuomotor transformations – the mapping between actual and visual location of the hand – during a learning
task. Subjects performed reaching movements under multiple visuomotor transformations in which they received visual
feedback of their hand position only at the end of the movement. After experiencing a particular transformation for one
reach, subjects have insufficient information to determine the exact transformation, and so their second reach reflects a
combination of their prior over visuomotor transformations and the sensory evidence from the first reach. We developed a
Bayesian observer model in order to infer the covariance structure of the subjects’ prior, which was found to give high
probability to parameter settings consistent with visuomotor rotations. Therefore, although the set of visuomotor
transformations experienced had little structure, the subjects had a strong tendency to interpret ambiguous sensory
evidence as arising from rotation-like transformations. We then exposed the same subjects to a highly-structured set of
visuomotor transformations, designed to be very different from the set of visuomotor rotations. During this exposure the
prior was found to have changed significantly to have a covariance structure that no longer favored rotation-like
transformations. In summary, we have developed a technique which can estimate the full covariance structure of a prior in a
sensorimotor task and have shown that the prior over visuomotor transformations favor a rotation-like structure. Moreover,
through experience of a novel task structure, participants can appropriately alter the covariance structure of their prior.
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Introduction

Uncertainty poses a fundamental problem for perception, action
and decision-making. Despite our sensory inputs providing only a
partial and noisy view of the world, and our motor outputs being
corrupted by significant amounts of noise, we are able to both
perceive and act on the world in what appears to be an efficient
manner [1,2]. The investigation of the computational principles
that might underlie this capability has long been of interest to
neuroscientists, behavioral economists and experimental psychol-
ogists. Helmholtz [3] was one of the first to propose that the brain
might operate as an ‘inference machine’ by extracting perceptual
information from uncertain sensory data through probabilistic
estimation. This computational framework has now gained
considerable experimental support and has recently led to the
formulation of the ‘Bayesian brain’ hypothesis [4,5]. According to
this hypothesis, the nervous system employs probabilistic internal
models representing Bayesian probabilities about different states of
the world that are updated in accordance with Bayesian statistics
whenever new evidence is incorporated. Crucially, this update
depends on two components: a prior that represents a statistical
distribution over different possible states of the world, and the
incoming evidence about the current state that is provided through
noisy sensory data.

In the Bayesian framework the prior can have a strong impact
on the update, with particular priors leading to inductive biases

when confronted with insufficient information. Many perceptual
biases have been explained as the influence of priors learned from
the statistics of the real world, such as the prior for lower speed
when interpreting visual motion [6,7], the prior for lights to shine
from above when interpreting object shape [8,9] and the prior that
near-vertical visual stimuli are longer than horizontal stimuli [10].
However, there are some phenomena such as the size-weight
illusion – the smaller of two objects of equal weight feels heavier –
that appear to act in the direction opposite to that expected from
straightforward integration of the prior with sensory evidence
[11,12]. Interestingly, despite the perceptual system thinking the
smaller object is heavier, the motor system is not fooled as, after
experience with the two objects, people generate identical forces
when lifting them [13]. Many cognitive biases can also be
explained, not as errors in reasoning, but as the appropriate
application of prior information [14–16], and the Bayesian
approach has been particularly successful in explaining human
performance in cognitive tasks [17,18].

In sensorimotor tasks, a number of studies have shown that
when a participant is exposed to a task which has a fixed statistical
distribution they incorporate this into their prior and combine it
with new evidence in a way that is consistent with Bayesian
estimation [5,19,20]. Similarly, when several sources of evidence
with different degrees of uncertainty have to be combined, for
example a visual and a haptic cue, humans integrate the two
sources of evidence by giving preference to the more reliable cue in
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quantitative agreement with Bayesian statistics [21–23]. More-
over, computational models of motor control, such as optimal
feedback control [24–27], are based on both Bayesian estimation
and utility theory and have accounted for numerous phenomena
in movement neuroscience such as variability patterns [24],
bimanual movement control [28,29], task adaptation [30–32] and
object manipulation [33]. There have also been several proposals
for how such Bayesian processing may be implemented in neural
circuits [34–36].

If one uses Bayesian estimation in an attempt to learn the
parameters of a new motor task, the prior over the parameters will
impact on the estimates. While previously priors have been either
imposed on a motor task or assumed, there has been no paradigm
that allows the natural prior distribution to be assessed in
sensorimotor tasks. Here we develop a technique capable of
estimating the prior over tasks.

We examine visuomotor transformations, in which a discrep-
ancy is introduced between the hand’s actual and visual locations,
and estimate the prior over visuomotor transformations. Impor-
tantly, we are not simply trying to estimate the mean of the prior
but its full covariance structure. Subjects made reaching
movements which alternated between batches in which feedback
of the hand’s position was either veridical or had a visuomotor
transformation applied to it. By exposing participants to a large
range of visuomotor transformations we are able to fit a Bayesian
observer model to estimate the prior. Our model assumes that at
the start of each transformation batch a prior is used to instantiate
the belief over visuomotor transformations and this is used to
update the posterior after each trial of a transformation batch. The
prior to which the belief is reset at the start of a transformation
trial may change with experience. For our model we estimate the
average prior used over an experimental session by assuming it is
fixed within a session, as we expect the prior to only change slowly
in response to the statistics of experience.

Our approach allows us to study the inductive biases of
visuomotor learning in a quantitative manner within a Bayesian
framework and to estimate the prior distribution over transfor-
mations. Having estimated the prior in one experimental session,
we examine whether extensive training in two further sessions with
a particular distribution of visuomotor transformations could alter
the participants’ prior.

Results

Subjects made reaching movements to targets presented in the
horizontal plane, with feedback of the hand position projected into
the plane of movement by a virtual-reality projection system only
at the end of each reach (terminal feedback). Reaches were from a
starting circle, *30 cm in front of the subject’s chest, to a target
randomly chosen from within a rectangle centred 11 cm from the
starting circle (*41 cm in front of the chest). Subjects made
reaching movements in batches which were alternately veridical
and transformed (Figure 1 top, see Methods for full details). In a
veridical batch, the cursor was always aligned with the hand. In a
transformation batch, subjects experienced a visuomotor transfor-
mation that remained constant throughout the batch and in which
the terminal-feedback cursor position (v) was a linear transforma-
tion (specified by transformation matrix T) of the final hand
position (h) relative to the (constant) starting point of the reaches:
v~Th. In component form, this can be written as
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! "
~

a b

c d

! "
h x

h y
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where we define the (x,y) coordinates as (left-right, backward-
forwards) relative to the subject. Each transformed batch used a
different transformation. The number of transformations experi-
enced was at least 108 for each subject in each of three
experimental sessions (mean 147 transforms, s~24; see Table 1).
Transformation batches contained at least three trials (mean
length: 4.9 trials, s~3:0) and generally continued until a target
had been hit (achieved on 91% of batches). Veridical batches
always continued until a target had been hit (mean length: 1.4
trials, s~0:8). The purpose of the veridical batches was to wash
out short-term learning. Transformed trials were distinguished
from veridical trials by the color of the targets, so that the onset of
a new transformation was clear to the subjects. The length of a
session was on average 921 trials (s~118) and lasted 82 minutes
(s~9). Subjects performed three experimental sessions on
different days. The transformations used in Session 1 were drawn
from an ‘uncorrelated’ distribution so as to minimize pairwise
correlations between elements of the transformation matrix. The
transformations used in Session 2 & 3 were drawn from a
‘correlated’ distribution to examine whether this would change
subjects’ priors (see Figure 1 bottom).

Initial analysis
Figure 2 shows the starting location and rectangle in which the

targets could appear together with 50 examples of ‘perturbation
vectors’ that join the hand position on the first trial of a
transformation batch to the displayed cursor position (pi~vi{hi

where i is the trial index, in this case 1). On the first trial of each
transformation batch, the ‘target-hand vector’ joining the centre of
the target t to the final position of the hand h (the ‘target-hand
vector’ qi~hi{ti) was shorter than 3 cm in 90% of cases (Figure 3,
column A, top panel), suggesting that the preceding veridical
batches had washed out most of the learning. Subjects were
instructed that on the second and subsequent trials of each
transformation batch, they should attempt to compensate for the
transformation in order to hit the target with the cursor. Hence on
trials 2 and 3, the proportion of final hand positions within 3 cm of
the target drops to 43% (middle panel of Figure 3, column A) and
36% (bottom panel), respectively. Further analysis suggests that the
increase in length of the target-hand vectors on trials 2 and 3 is due
to subjects attempting to counter the transformation, rather than

Author Summary

When learning a new skill, such as riding a bicycle, we can
adjust the commands we send to our muscles based on
two sources of information. First, we can use sensory
inputs to inform us how the bike is behaving. Second, we
can use prior knowledge about the properties of bikes and
how they behave in general. This prior knowledge is
represented as a probability distribution over the proper-
ties of bikes. These two sources of information can then be
combined by a process known as Bayes rule to identify
optimally the properties of a particular bike. Here, we
develop a novel technique to identify the probability
distribution of a prior in a visuomotor learning task in
which the visual location of the hand is transformed from
the actual hand location, similar to when using a computer
mouse. We show that subjects have a prior that tends to
interpret ambiguous information about the task as arising
from a visuomotor rotation but that experience of a
particular set of visuomotor transformations can alter the
prior.

Priors over Visuomotor Transformations
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just exploring the workspace randomly. Figure 3, column B shows
that the direction of the target-hand vector tends to be opposite to
that of the perturbation vector experienced on the previous trial,
while column C shows that the lengths of these two vectors are
positively correlated. The ratio of the length of the target-hand
vector on the second trial to that of the perturbation vector on the
first trial gives a measure of the extent of the adaptation induced
by the experience on the first trial, with a value of zero suggesting
no adaptation. We regressed this adaptation measure for all
subjects and sessions (removing a few outliers – 0.34% – where this
measure was greater than 5) against the absolute angular
difference between the direction of the first and second targets,
in order to test the assumption made later in our modelling that
adaptation generalizes across the workspace. If there were a local
generalization function with a decay based on target direction we
would expect that the greater the angular difference the smaller
the adaptation measure. The fit had a slope which was not
significantly different from zero (p~0:1) suggesting global
generalization.

Compensatory responses tend to be in the correct direction:
Column D shows that target-hand vectors on trials 2 and 3 tend to
be in the same direction as the target-hand vector that would place
the cursor on the target (qo

i ~T{1ti{ti), and column E shows that

the lengths of these two vectors are also positively correlated. This
suggests that subjects are adapting within a batch so as to
compensate for the induced perturbation.

Bayesian observer model
We fit subjects’ performance on the first two trials of each

transformed batch using a Bayesian observer model in which we
assume subjects attempt to estimate the four parameters (a, b, c, &
d) of the transformation matrix. We represent the subject’s prior as
a four-dimensional multivariate Gaussian distribution over these
four parameters, centred on the identity transformation (since
subjects naturally expect the visual location of the hand to match
its actual location). Our inference problem is to determine the
4|4 covariance matrix of this prior. Figure 4 includes a schematic
of a prior with the four-dimensional distribution shown as six two-
dimensional marginalizations with isoprobability ellipses (blue),
representing the relation between all possible pairings of the four
elements of the transformation matrix.

An optimal observer would integrate this prior with information
received on the first trial (hand position and visual feedback of
hand position) to generate a posterior over transformations. Even
if there were no noise in proprioception or vision, the information
from the first trial would not uniquely specify the underlying

Figure 1. The experimental design. Each session alternated between veridical and transformed batches of trials. Each subject participated in
three sessions, the first using an uncorrelated distribution of transformations, and the second and third using a correlated distribution. The joint
distributions of b and c are plotted.
doi:10.1371/journal.pcbi.1001112.g001

Table 1. The experimental subjects.

Session 1 Session 2 Session 3

Subject Transforms Trials Delay Transforms Trials Delay Transforms Trials

1 120 745 3 118 786 9 120 850

2 150 947 3 150 830 8 200 1102

3 144 827 4 150 860 8 180 977

4 133 944 3 140 929 9 160 1075

5 150 871 5 150 838 8 206 1076

6 140 970 6 124 928 9 155 1117

7 160 1090 5 151 1035 7 144 955

8 133 861 3 108 731 7 134 762

The number of transformations and trials in each experimental session, and the lengths of the delay in days between sessions.
doi:10.1371/journal.pcbi.1001112.t001

Priors over Visuomotor Transformations
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transformation. For example, for a particular feedback on the first
trial the evidence is compatible with many settings of the four
parameters (grey lines and planes in Figure 4). Therefore, given
the inherent ambiguity (and noise in sensory inputs), the estimated

transformation depends both on the sensory evidence and prior
which together can be used to generate a posterior distribution
over the four parameters of the transformation matrix (Figure 4,
red ellipses). Our Bayesian observer then uses the most probable
transformation (the MAP estimate is the centre of the red ellipses
in Figure 4) to determine where to point on the second trial. Our
aim is to infer the prior distribution for each subject in each
experimental session by fitting the pointing location on the second
trial based on the experience on the first trial. The model assumes
the observer starts each transformation batch within a session with
the same prior distribution, although this distribution will of course
be updated during each batch by combination with evidence. As
shown above, these updates are washed out between batches
through the interleaved veridical batches.

Session 1
In Session 1, transformations were sampled so as to minimize

pairwise correlations between elements of the transformation
matrix. This ‘uncorrelated’ distribution was designed to avoid
inducing learning of new correlations. The set of transformations
experienced in the first session is shown in the top-left cell of
Figure 5, viewed in the same six projections of the four-
dimensional space used in Figure 4. The Gaussian priors fit to
each of the eight subjects’ data in Session 1 are shown in the
middle-left cell of Figure 5. For some pairs of elements of the
transformation matrix (e.g. c{d) the prior appears to show little
correlation whereas for others (e.g. b{c) there appears to be a
stronger correlation. To quantify these relations we examined the
correlation coefficients between each pair of elements of the

Figure 2. Target area and example perturbation vectors. The
starting point of the reaches (1 cm radius circle) and the area from which
the centres of targets were drawn (16|4 cm rectangle: not displayed to
the subject) are shown, in addition to ‘perturbation vectors’ from
subjects’ hand positions to the corresponding cursor positions on the
first trials of 50 example transformations from Session 1.
doi:10.1371/journal.pcbi.1001112.g002

Figure 3. Analysis of hand positions across the trials of a transformation batch. Column A shows the distribution (across all subjects and
sessions) of the ‘target-hand vector’ representing the position of the hand relative to the target, qi~hi{ti , separately for trials 1, 2 & 3 of a
transformation batch. Columns B and C show the relation between the target-hand vector and the ‘perturbation vector’ from hand to cursor on the
previous trial, pi{1~vi{1{hi{1. Column B gives the distribution of the angle between the two vectors, and Column C plots the lengths of the
vectors against each other. Columns D and E make the same comparisons between the target-hand vector and the target-hand vector that would
place the cursor on the target, qo

i ~T{1ti{ti . Column D gives the distribution of the angle between the two vectors, and Column E plots the lengths
of the vectors against each other.
doi:10.1371/journal.pcbi.1001112.g003

Priors over Visuomotor Transformations
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transformation matrix across the subjects. First, to examine the
consistency of the correlation across subjects we tested the null
hypothesis that subjects’ correlation coefficients were uniformly
distributed between {1 and z1 (Kolmogorov-Smirnov test). We
found that only between elements b and c was the correlation
significantly consistent (pv0:001). In addition we used a t-test to
examine whether the correlations across subjects were significantly
different from zero (although correlations are strictly speaking not
normally distributed). We found that only the b{c correlation was
significant (mean {0:78, pv0:001).

We also analyzed the orientations of these covariance ellipses.
Confidence limits on the orientation angle of the long axis of each
ellipse were obtained by bootstrapping. The bottom-left cell of
Figure 5 shows, for each subject, the mean angle (thick line) and
the 95% confidence limits (thin lines connected by curved arrows).
The b{c confidence limits are exclusively in the negative range
for all but two subjects, while for all other pairings of elements
confidence limits for most subjects overlap the 00 or 900 points
indicative of an absence of correlation. The mean b{c angle across
subjects was {30:40 (95% confidence limits obtained by boot-
strapping of the best fits: {41:20 to {20:40). We also found that
the a{d covariance angle was significantly positive (mean across
subjects z69:80, confidence limits z61:60 to z77:40).

Sessions 2 and 3
Each subject participated in Session 2 between three and six

days after Session 1, and in Session 3 between seven and nine days
after Session 2 (Table 1). These sessions both used a set of

transformations whose distribution was chosen so as to be very
different from the subjects’ priors measured in Session 1. This
allowed us to examine whether we could change subjects’ priors
through experience. As subjects had priors with a strong negative
correlation between elements b and c of the transformation matrix
we used a ‘correlated distribution’ over transformations in which
the b{c correlation was set to z1, with an orientation angle of
z450 (Figure 5, top-right cell). Importantly, the two distributions
used in Session 1 and in Sessions 2 & 3 were designed so that the
distribution of evidence (that is the relation between visual and
actual hand locations) shown on the first trial of each
transformation batch was identical under the two distributions
(see Methods). Therefore any changes in behavior on the second
trial (which we use to estimate the prior) arose because of changes
in the subject’s prior. The remainder of the trials within a batch
have different statistics between Session 1 and Sessions 2 & 3, so
we did not use data beyond trial 2 to estimate the prior, although
this could be used by the subjects to alter their internal prior.

The priors fit to the data of the five subjects in Session 2 are
shown in the middle-right cell of Figure 5. We found that in
Session 2 the b{c correlations across subjects were now not
significantly different from zero (mean correlation coefficient
{0:15, p~0:42, t-test) and were not distributed significantly non-
uniformly across subjects (p~0:37, K-S test). Confidence limits
(Figure 5, bottom-right cell) on the b{c covariance angle now
overlapped 00 for all but one subject, again implying the absence
of correlation. Confidence limits on the mean b{c covariance
angle across subjects overlapped 00 ({15:70 to z19:40, mean
{1:40). A weak but significant a{d correlation was now found
(mean z0:33, pv0:05 on t-test and K-S test), and the a{d
covariance angle continued to be positive (mean z74:30,
confidence limits z63:30 to z82:90), although angles were not
significant for any individual subject.

In Session 3 (see Figure 6, which summarises changes in the
b{c relation across sessions) the b{c correlation was still not
significant (mean correlation coefficient z0:13, p~0:31 on t-test
and p~0:37 on K-S test). The covariance angle confidence limits
now overlapped zero within all subjects and across subjects ({3:20

to z9:30, mean z3:40). A weak but significant a{d correlation
was again found (mean z0:46, pv0:001 on t-test and pv0:05 on
K-S test), and the a{dcovariance angle continued to be positive
(mean across subjects z61:50, confidence limits z42:50 to
z75:00), although angles were only significant for three individual
subjects.

Model comparison
To assess the extent to which our Bayesian observer model

explained the data, we compared the magnitudes of its errors in
predicting hand positions to the errors made by four other models:
(A) the ‘no-adaptation’ model, which assumes the hand hits the
centre of the target on all trials; (B) the ‘shift’ model, which is also a
Bayesian observer but assumes the transformation is a translation;
(C) the ‘rotation & uniform scaling’ model, another Bayesian
observer that assumes the transformation is a rotation combined
with a scaling; (D) the ‘affine’ model, which is a Bayesian observer
more general than the standard model in that it accounts for linear
transformations combined with shifts. Comparisons of hand
position prediction error were made for each trial of a transformed
batch from the 2nd to the 7th, although it should be remembered
that trials after the 3rd represent progressively fewer batches, with
only 44% of batches lasting to the 4th trial and only 19% lasting to
the 7th. The Bayesian observer models integrated information
about a transformation from all previous trials of a batch when
making a prediction for the next trial. Since the Bayesian observer

Figure 4. Schematic of the Bayesian observer model. The plots
show six 2-dimensional views of the 4-dimensional probability space of
the a, b, c & d parameters of the transformation matrix. The Gaussian
prior is shown in blue (marginalised 1 s.d. isoprobability ellipses). On the
first trial the evidence the subject receives (for simplicity shown here as
noiseless) does not fully specify the transformation uniquely, and the
transformations consistent with this evidence are shown in gray. This
evidence (as a likelihood) is combined with the prior to give the
posterior after the first trial (red ellipses: these are shown calculated
from the noisy visual feedback) and the MAP of this posterior is taken as
the estimate of the transformation. The cross shows the position of the
actual transformation matrix used in generating the first-trial evidence.
doi:10.1371/journal.pcbi.1001112.g004

Priors over Visuomotor Transformations
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models were all fit to data from the second trials of each
transformed batch (i.e. the standard model used the fits presented
above), comparison of prediction errors on the second trials
themselves was done using 10-fold cross-validation for these
models, in order to avoid over-fitting by complex models.

To compare the models we focus on trial 3, which is late enough
that the subjects have received a considerable amount of
information about the transformation (just enough to specify the
whole transformation matrix, in noiseless conditions) but early
enough that all batches can be included. Figure 7 shows that on
this trial the standard model makes smaller prediction errors for
the hand positions (averaged across all sessions) than any other
model. The next-best is the affine model (mean error 4.50 cm,
versus 4.34 for the linear model). On all other trials, the linear
model is also superior to all other models. The failure of the affine

model to perform better than the standard model shows that its
extra complexity, which allows it to account for shifts, is not
necessary. Accounting for shifts made little difference to the linear
components of the fits: the correlation coefficients between pairs of
elements of the transformation matrix were very similar to those in
the linear model fits (median absolute difference across all pairs:
0.11), and the b{c coefficients were again significantly negative in
Session 1 (pv0:001 on t-test and Kolmogorov-Smirnov test) and
ceased to be significantly different from zero in Sessions 2 and 3.
The covariance angles between pairs of elements were also very
similar to those in the linear model fits (median absolute difference:
3:250), and the b{c angles were significantly negative in Session 1
(95% confidence limits: {41:20 and {20:20) and ceased to be
significantly negative in Sessions 2 and 3.

We also varied the origin of the linear transformations that we
used in the Bayesian observer model, to see if the coordinate
system used by the experimental subjects was based around the
starting point of the reaches (small circle in Figure 8), or about
some other location such as the eyes (cross in Figure 8). The
shading in Figure 8 represents the fitting error and shows that
using the starting point of the reaches as the origin fits the data
considerably better than any other position tested (mean error:

Figure 5. Distributions of transformations and prior distributions in Sessions 1 and 2. Left column: Session 1. Right column: Session 2. Top
row: the distributions of transformations in the two sessions. In each case 700 of the experimental transformations are plotted in the six projections of
the 4-D space of linear transformations used in Figure 4. Middle row: the priors fit to the data of the 8 subjects, plotted in the style used for the priors
in Figure 4. Each covariance matrix has been scaled so that its largest eigenvalue is unity, in order that all priors can be displayed together without
any being too small to see. Bottom row: confidence limits on covariance orientation angles, shown for each pairing of the four elements of the
transformation matrix a, b, c, d. These confidence limits were obtained by bootstrapping, as explained in Methods. For each subject, thick lines show
the mean angle across the 1000 or more resampled fits. Thin lines, connected to the mean line by curved arrows, give the 95% confidence limits. Only
the range {900 to z900 is labelled, because the data is axial and therefore only exists in a 1800 range.
doi:10.1371/journal.pcbi.1001112.g005

Figure 6. Evolution of the b-c relationship. The top line shows the
best fits in each of the experimental sessions, for each of the eight
subjects; the middle line shows means and confidence limits on the
covariance orientation angles. The bottom-left graph shows the mean
across subjects of the orientation angles from the best fits to each
subject’s data, with 95% confidence limits on the mean found by
bootstrapping.
doi:10.1371/journal.pcbi.1001112.g006

Figure 7. Comparison of standard linear model against other
plausible models. Models are compared on the basis of their mean
error, across subjects and sessions, in predicting subjects’ hand
positions on trials 2–7 of transformation batches. For each trial, all
batches that lasted for at least that number of trials are used. Errors are
capped at 20 cm before averaging, to reduce the effect of outliers. Trial
2 values are computed using 10-fold cross-validation, and later trial
values are computed using fits to all transformation batches.
doi:10.1371/journal.pcbi.1001112.g007

Priors over Visuomotor Transformations
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3.49 cm for the starting point, versus 3.61 cm for the next best
position). In particular, a repeated-measures ANOVA (using
subject number and session as the other two factors) shows that
using the starting point as origin gives significantly lower errors
than using the eye position (pv0:05).

Discussion

By exposing participants to numerous linear transformations
(2|2 transformation matrices) in a virtual-reality reaching task in
the horizontal plane we were able to estimate the prior subjects
have over visuomotor transformations. After a new transformation
had been experienced for a single trial, we fit the prior in a
Bayesian observer model so as to best account for the subsequent
reach. That is, for the subject the first reach provides a likelihood
which together with his prior leads to a posterior over visuomotor
transformations, the maximum of which determines his second
reach. While the mean of the prior is assumed to be the identity
transformation (vision of the hand is expected to be where the
hand really is), we found the estimated prior to have a covariance
structure with a strong negative correlation between the off-
diagonal elements of the transformation matrix. We then exposed
the participants in two further sessions to visuomotor transforma-
tions from a distribution that had a positive correlation between
these off-diagonal elements (hence the opposite correlation
structure to the prior), and remeasured the prior. The estimated
prior had changed significantly in that there was now no
correlation between the off-diagonal elements, demonstrating
learning.

Our study has three key novel features. First, we have developed
a technique which can, unlike previous paradigms, estimate the
full covariance structure of a prior in a sensorimotor task. Second,
we have shown that for our task the prior over visuomotor
transformations favors rotation-like structures. Third, we have
shown that through experience of a novel correlation structure
between the task parameters, participants appropriately alter the
covariance structure of their prior.

Measuring the prior
Previous studies have attempted to determine the natural co-

ordinate system used for visuomotor transformations. The
dominant paradigm has been to expose subjects to a limited
alteration in the visuomotor map and examine generalisation to
novel locations in the workspace. These studies show that when a
single visual location is remapped to a new proprioceptive
location, the visuomotor map shows extensive changes throughout
the workspace when examined in one-dimensional [37–40] and in
three-dimensional tasks [41]. These studies are limited in two ways
in their ability to examine the prior over visuomotor transforma-
tions. First, they only examine how subjects generalize after
experiencing one (or a very limited set of) alterations between
visual and proprioceptive inputs. As such the results may depend
on the particular perturbation chosen. Second, while the
generalization to novel locations can provide information about
the co-ordinate system used, it provides no information about the
covariance structure of the prior. Our paradigm is able to address
both these limitations using many novel visual-proprioceptive
mappings to estimate the full covariance structure of the prior over
visuomotor transformations.

To study this covariance structure in the fitted priors, we
analyzed both the correlation coefficients between elements of the
transformation matrix – as a measure of the strength of the
relationship between elements – and also the orientation of the
covariance ellipses of pairs of elements – as a measure of the slope
of the relationship. A significant strong negative correlation was
seen between the off-diagonal elements of the 2|2 transformation
matrices in the priors found in Session 1. Such a relation is found
in a rotation matrix,

R ~
cosh sinh

{sinh cosh

! "
,

as this corresponds to a~d and b~{c in our transformation
matrix. This similarity suggests a bias for subjects to interpret
transformations as conforming to rotation-like structures. The
a~d and b~{c relations would still exist if a rotation were
combined with a uniform scaling. We do not claim that subjects
believe the transformations to be only rotations and uniform
scalings. If they did, we should have found a {450 relationship
between b and c in the prior and a strong z450 a{drelationship,
but the b{c covariance angle was around {300 and the a{d
correlation was weak. Rather, it seems likely that the subjects
believed many of the transformations in Session 1 to be rotations
combined with other perturbations.

Vetter and colleagues [41] also found an apparent bias for
rotations. However, these were rotations about the eyes, whereas
the centre of the coordinate system in our model is the starting
circle, approximately 30 cm in front of the eyes. We showed that
our subjects’ data across all sessions is best explained using the
starting circle as the origin of transformations, rather than the eyes
or any other location (Figure 8). The two studies are not
contradictory, because our subjects were shown the cursor on
top of the start circle at the start and end of every trial, and so
would have been likely to learn that it was the origin of the
transformations.

Importantly, to measure the prior we ensured that the
distribution of transformations in the first session was relatively
unstructured in the space of the four elements of the transforma-
tion matrix, and in particular the distribution of transformations
used had only a very small correlation between the off-diagonal

Figure 8. Comparison of possible linear transformation origins
for the Bayesian observer model. For each small square the
shading denotes the performance of the standard Bayesian observer
model when the origin of the linear transformations is set to the centre
of that square. Performance is measured using the error between
modelled and measured second-trial hand positions, averaged within
an experimental session for one subject (after capping all errors at
20 cm) and then averaged across all subjects and all sessions. The small
circle shows the start point of the reaches, which is used as the origin in
all other modelling. The cross shows the approximate position of the
eyes (0,{30 cm).
doi:10.1371/journal.pcbi.1001112.g008
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elements. Therefore, it is unlikely (particularly given the
adaptation results discussed below) that the prior for rotations
came about because of the particular set of transformations used in
our paradigm.

Our approach of probing a subject’s prior with many
transformations would be disrupted if the learning of these
transformations interfered with each other. Many studies have
shown interference between the learning of similar but opposing
visuomotor perturbations [42–44], similar to that found between
two dynamic perturbations [45,46]. However, subjects in those
experiments were trained for dozens of trials on each perturbation;
learning of individual transformations over just a few trials in our
experiment would have been much less resilient to overwriting
with new memories. Additionally, the veridical batches between
each transformation in our experiment would have washed out
any perceptual or non-cognitive component of learning [38,47–50].

The previous work on visuomotor generalization cited above
[37–39,41], which found that experiencing single visual-proprio-
ceptive pairs induced remapping throughout the workspace,
justifies the assumption made in the analysis of the current study
that perturbations experienced at one location will induce adaptive
responses throughout the workspace. In addition, our analysis
shows that the magnitude of the adaptive response on the second
trial does not decrease with the angular deviation of the second
target from the first, providing further support for global
generalization under terminal feedback. Another reaching study
[51] found much more limited generalization across locations, but
was criticized [41] on the grounds that the starting point of reaches
was not controlled, and that subjects were constrained to make
unnatural reaching movements at the height of the shoulder. Work
with visual feedback of the hand position throughout the reach has
found that scalings are generalized throughout the workspace but
rotations are learned only locally [52]. This lack of generalization
is clearly at odds with the weight of evidence from terminal-
feedback studies. The difference is perhaps due to differing extents
of cognitive adaptation under the two feedback conditions.

Altering the prior
Recent studies have shown that when exposed to tasks that follow

a structured distribution, subjects can learn this structure and use it
to facilitate learning of novel tasks corresponding to the structure
[53]. In the current study, when participants were exposed to a
structured distribution of transformations in Sessions 2 & 3 we
found that participants’ priors changed to become closer to the
novel distribution. The estimated prior’s negative correlation
between the off-diagonal elements observed in the Session 1 priors
was abolished by training on a distribution of transformations in
which these off-diagonal elements were set to be equal and therefore
perfectly positively correlated. This abolition in the fitted priors is
evidenced both by the orientations of the covariance ellipses
between the off-diagonal elements, which became clustered around
00, and by the correlation coefficients for this pair of elements, which
also clustered around zero. Importantly, the perturbations on the
first reach of each transformed batch in Sessions 2 & 3 were
generated identically to those in Session 1 so that we can be sure it is
the prior that has changed, as the evidence shown to the subject was
identically distributed and only varied in terms of the feedback on
the second and subsequent trials.

Previous studies have also demonstrated the ability of people to
learn priors over novel sensorimotor tasks. For instance, one study
showed that subjects learned a non-zero-mean Gaussian prior over
horizontal shifts [19], while reaction-time studies [54] succeeded in
teaching subjects non-uniform prior distributions over potential
targets for a saccade. Similarly, other studies have shown that

priors, such as the relation between size and weight [55] and over
the direction of light sources in determining shape from shading
[8], can be adapted through experience of a training set which
differs from the normal prior. In many of these previous studies
only the mean of the learned prior was measured, and the priors
were generally one-dimensional whereas in the current study we
expose subjects to distributions in which there is a novel and multi-
dimensional covariance structure. This difference in dimensional-
ity may also explain why a one-dimensional structure of
visuomotor rotations [53] could perhaps be learned faster than
the three-dimensional structure of transformations used in Sessions
2 & 3 in the present study, which was never learned fully. As
dimensionality increases, the amount of data required by a subject
to specify the structure increases dramatically.

Extensions of the technique
In the current study we have made a number of simplifying

assumptions which facilitated our analysis but which we believe in
future studies could be relaxed. First, we have analysed the prior
within the Cartesian coordinate system in which the prior is over
the elements of the set of 2|2 transformation matrices. We
believe this coordinate system to be a reasonable starting point for
such research, since the visuomotor generalization studies cited
above found visuomotor generalization to be linear [37,38,41]. In
particular, the bias seems to be for rotations [41] rather than shifts
in Cartesian space, which are not linear transformations; some
studies describe generalization of shifts but as they either only
examine a one-dimensional array of targets [37,38] or a single
generalization target [56] their results can not distinguish between
rotations and shifts.

Furthermore, the comparison of different models in this paper
(Figure 7) shows that our linear-transformations model performs
better than a more complex affine-transformations model and
simpler models such as the shift model. This suggests that our
linear-transformations model is of the right level of complexity for
explaining subjects’ performance in this paradigm. That the shift
model performed considerably better than the no-adaptation
model does not show that subjects believed any transformations to
have a shift component and that the extra complexity of the affine-
transformations model is therefore necessary. Rather, the shift
model may have simply managed to approximate linear
transformations (such as small rotations) as shifts.

A further simplifying assumption was that the prior takes on a
multivariate Gaussian distribution over elements of the transfor-
mation matrix. The true prior could be both nonlinear and non-
Gaussian in our parameterization and as such our estimation may
be an approximation to the true prior. While it may be possible to
develop techniques to find a prior which has more complex
structure, such as a mixture of Gaussians, such an analysis would
require far more data for the extra degrees of freedom incurred by
a more complex model.

Another model assumption is that the subject uses the MAP
transformation to choose his hand position. Although it is common
for Bayesian decision models to use point estimates of parameters
when making decisions, different rules that also take into account
the observer’s uncertainty over the transformation may better
model the data.

Our model was purely parametric, with the observer perform-
ing inference directly over the parameters of the transformation
matrix. In the future it will be interesting to consider hierarchical
observer models which would perform inference over structures of
transformations, such as rotations, uniform scaling or shearings,
and simultaneously over the parameters within each structure,
such as the angle of the rotation. This observer would have a prior
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over structures and over the parameters within each structure.
Nevertheless, our study shows that we can estimate the full
covariance structure of a prior in a sensorimotor task, that this
prior has similar form across subjects and that it can be altered by
novel experience.

Methods

Experimental methods
All eight subjects were naı̈ve to the purpose of the experiments.

Experiments were performed using a vBOT planar robotic
manipulandum [57]. Subjects used their right hand to grasp the
handle, which they could move freely in the horizontal plane. A
planar virtual reality projection system was used to overlay images
into the plane of movement of the vBOT handle. Subjects were
not able to see their arm.

Ethics statement. All subjects gave written informed consent
in accordance with the requirements of the Psychology Research
Ethics Committee of the University of Cambridge.

First session. In the first session, subjects alternated between
making reaching movements under veridical and transformed
feedback (see Figure 1 for a summary of the experimental design).
On each trial subjects made a reach from a midline starting circle
(1 cm radius, *30 cm in front of the subject’s chest) to a visually
presented target. To initiate a trial the hand had to be stationary
within the starting circle (speed less than 0:5 cm s{1 for 800 ms),
at which point the visual target (2 cm radius) appeared. The target
location was selected pseudorandomly from a 16|4 cm rectangle
centred 11 cm further in front of the subject’s chest than the
starting location (see Figure 2). In the veridical batches, visual
feedback of the final hand location (0.5 cm radius cursor) was
displayed for 1 s at the end of the movement (hand speed less than
0:5 cm s{1 for 300 ms). Subjects then returned their hand to the
starting circle, and the cursor representing their hand was only
displayed when the hand was within 1.5 cm of the centre of the
starting circle. Subjects repeated trials (with a new target selected
uniformly subject to its direction from the starting circle being
w100 from the preceding target) until they managed to place the
centre of the hand cursor within a target circle. They then
performed a batch of transformed trials.

Transformed trials were the same as veridical trials except that:
1) a linear transformation was applied between the hand’s final
location and the displayed cursor position and this transformation
was kept fixed within a batch; 2) the position of the visual target
(3 cm radius) had to satisfy an added requirement not to overlap
the cursor position of the preceding trial; 3) to end a batch subjects
had to complete at least three trials and place the centre of the
hand cursor within a target circle, and 4) starting on the eighth
trial, a batch could spontaneously terminate with a probability of
0.2 after each trial.

For the transformed trials the cursor position (v) was a linear
transformation (specified by transformation matrix T) of the final
hand position (h) relative to the starting circle: v~Th. In
component form, this can be written:

vx

vy

! "
~

a b

c d

! "
h x

h y

! "
:

The target color, yellow or blue, indicated whether the trial was
veridical or transformed respectively. Subjects were told that on
‘blue’ trials the feedback was not of their actual hand position, but
was related to their hand position by a rule. Subjects were told to
attempt to learn, and compensate for, this rule in order to hit the

targets, and that the rule would be constant across trials until they
had hit a target and a set of ‘yellow’ trials had begun. They were
told that a new rule was chosen each time a new set of blue trials
started, and was unrelated to the rule of the previous set.

Second and third sessions. In the second and third sessions,
subjects again alternated between making reaching movements
under veridical and transformed feedback. However, in the
transformed feedback batches, full-feedback trials were included
in which the transformed hand cursor was continuously displayed
throughout the trial, in order to speed up learning of the
transformations and thus of the distribution of transformations.
On these trials the batch did not terminate on reaching the target
(1 cm radius) and these trials occurred randomly after the third
trial with probability 1{exp({0:3k), where k is a trial counter
that starts at 1 on the fourth trial and resets to 0 after a full-
feedback trial. Thus this probability rises with each consecutive
terminal-feedback trial, and drops to zero on the trial after a full-
feedback trial.

Correlated distribution of transformations. To sample a
transformation from the correlated distribution used in sessions 2
and 3, elements a and d of the transformation matrix were
sampled from the uniform distribution U(0,2). Elements b and c
were set equal to each other and were sampled from a zero-mean
Gaussian distribution with standard deviation s~0:7. To ensure
that the target was reachable, a proposed transformation was then
rejected and resampled if it mapped the hand cursor for any hand
position within the target rectangle outside the central 80% of
either dimension of the 64|40 cm screen, or if it required the
hand position to be further than 30 cm from the starting circle to
hit any possible target. The resulting distribution of
transformations is shown in the top-right cell of Figure 5. This
distribution was chosen based on pilot experiments which
suggested that subjects have a prior that b~{c and hence
setting b~c would differ from this prior and engender new
learning.

Uncorrelated distribution of transformations. In Session
1, the transformation on the first trial was also selected from the
correlated distribution. This ensured that the distribution of
evidence given to the subject on the first trial was consistent across
sessions. However, on the second trial of a batch a new
transformation consisted with the first-trial evidence was chosen,
and then used for this and all remaining trials of the batch. This
new transformation is treated in our analysis as if it had been the
transformation throughout the batch, since it would have
generated the same evidence on the first trial as the
transformation from the correlation distribution. The new
transformation was chosen such that across batches there were
negligible correlations between any pair of elements in the
eventual transformation matrices. To achieve this, at the start of
the second trial elements a and c were drawn from Gaussians with
s~0:7 and means 1 and 0 respectively, and b and d were then
uniquely specified so as to be consistent with the hand and cursor
positions of the first trial. The rules for rejection of proposed
transformations from the correlated distribution were also applied
to the choosing of an uncorrelated transform on the second trial of
a batch in Session 1; if transformations failed, more were drawn
until an eligible transform consistent with the first trial evidence
was found. The resulting uncorrelated distribution of the
transformation matrices of the second and subsequent trials of
the transformed batches of Session 1 (Figure 5, top-left cell) shows
minimal correlations between the four elements of the matrix
(r2v0:02 across all pairs), while each element of the matrix has
similar standard deviation to in the correlated distribution
(Table 2).
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Modelling
The standard model. Our observer model starts each

transformation batch within an experimental session with the
same prior probability distribution over transformations. Over the
course of each batch, it optimally combines this prior with the
evidence shown to the subject, and on each trial uses the updated
distribution to select its final hand position.

We vectorize the transformation matrix, i.e. m~vec(T), in
order to model the probability distribution over transformations as
a multivariate Gaussian p(m)~N (mjm,

PP
). This distribution on

the first trial of a transformation batch is the prior, N (mjm1,
PP

1).

The prior mean is the identity transform: m1~vec(I)~(1,0,0,1)T.
Our inference problem is to the determine the 4|4 prior
covariance matrix

PP
1. For mathematical simplicity, we actually

performed inference on the precision matrix L1~
PP{1

1 .
On any transformed trial i of a batch, the subject has access to

the actual (hi) and transformed visual location of the hand
(vi~Thi). Our observer can use Bayes rule to update its
distribution over transformations with this new evidence:

p(Tjv1:i,h1:i)!p(vijT,hi)p(Tjv1:i{1,h1:i):

Our aim is to find the prior p(Tjh1), which we can replace with
p(T) since it is reasonable to assume that the subject does not
believe the transformation T to depend on the first-trial hand
position. The likelihood function is:

p(vijT,hi)~N (vijThi,Sv),

since for tractability we model the internal representation of the
hand position h as noiseless, with all noise being on the
transformed hand position v (although in reality this noise consists
of two components affecting both v and h). Thus the model
observer’s probability distribution over the actual v, given the v it
observes, is N (v,Sv), where Sv~kI. This noise, actually
representing both motor and visual noise, was modelled as
isotropic Gaussian because a preliminary experiment with
unperturbed reaching movements found the combined motor
and visual noise in this paradigm to be near to isotropic.

We now express the likelihood function in terms of the
vectorized transformation matrix (m~vec(T)):

p(vijm,hi)~N (vijAim,Sv),

where Ai is a function of hi:

A~
h x 0 h y 0

0 h x 0 h y

! "
:

We multiply this Gaussian likelihood with the Gaussian
distribution over transformations to give an updated distribution
over transformations [58]:

p(mjv1:i,h1:i)~N (mjL{1
iz1½Ai

TS{1
v vizLimi",L{1

iz1),

where

Liz1~LizAi
TS{1

v Ai:

The observer then takes the MAP estimate of the transforma-
tion (T̂Tiz1) and applies its inverse to the target position on the next
trial tiz1, such that the predicted hand position is h#iz1~T̂T{1

iz1tiz1.
It can be shown that scaling the visual noise constant, k, will

simply induce the same scaling in the prior covariance L{1 on all
trials, with no effect on the predicted hand positions on the second
and subsequent trials. Since our analysis focusses on the shape
rather than the absolute size of the prior covariance, we simply set
k to 1 cm2.

Fitting the model. For a given prior covariance over the
elements of the transformation matrix, the model predicts the
optimal locations for the reaches on the second trial of each batch
(h#2). As a measure of goodness-of-fit we computed a robust
estimate of error between the predicted and actual hand position
(ej is the Euclidean error on trial 2 of transformation batch j)
across the N batches of a session for one subject,

cost~{
XN

j

exp
e2

j

2s2

 !

,

with s set to 10 cm. Use of this robust error measure reduces
sensitivity to outliers. Our choice of s was in order to maximize
sensitivity to errors in the 4–10 cm range that was common for
predictive errors for our model. We found that using different
values for s (5 and 20 cm) did not affect our main findings:
significantly negative correlation coefficients between b and c in
Session 1 (pv0:01 on t-test and Kolmogorov-Smirnov test) that
ceased to be significant in Sessions 2 and 3; and significantly
negative angles of the b{c covariance in Session 1 that then
clustered around zero and ceased to be significantly negative in
Sessions 2 and 3.

We then optimized the covariance matrix for each subject in
each session to minimize the cost. We did this by optimizing the 10
free elements of the 4|4 upper triangular matrix K , where
L1~K TK . This guarantees that L1 will be symmetric and positive
semi-definite (a requirement of a precision or covariance matrix).
To further constrain L1, and thus its inverse

P
1, to be positive-

definite, the diagonal elements of K were constrained to be
positive. These steps do not prevent near-singular matrices being

Table 2. Statistics of the two distributions of transformations.

a b c d

Correlation in uncorrelated
distribution

a 1.00 0.13 0.05 0.13

b 1.00 20.09 0.03

c 1.00 0.01

d 1.00

S.D. in uncorrelated distribution 0.64 0.62 0.72 0.53

S.D. in correlated distribution 0.53 0.54 0.54 0.41

Mean in uncorrelated distribution 1.12 0.01 20.01 1.07

Mean in correlated distribution 1.17 0.03 0.03 0.99

Top: statistics of the ‘uncorrelated’ and ‘uncorrelated’ distributions, estimated
from the 1130 transforms used in Session 1 and the 1091 transforms used in
Session 2 respectively.
doi:10.1371/journal.pcbi.1001112.t002
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evaluated; to avoid such numerical problems, I|10{4 was added
to L1 before evaluation of the cost during fitting and at the end of
the fitting process.

A trust-region-reflective algorithm implemented by the fmin-
con function of Matlab’s Optimization Toolbox was used, with fits
started from random precision matrices Lr~BTB, where B is a
4|4 matrix whose elements are independently drawn from a zero
mean Gaussian distribution with s~1. A hundred fits were run for
each session and the one with the lowest cost chosen.

Validating the model. 825 simulated datasets were created
by sampling random ‘generating’ priors (created in the same way
as the random precision matrices used to initiate model fits) and
running the model on an artificial experiment with 150
transformations chosen as for the real experiments. Zero-mean
Gaussian noise of covariance I|0:23 cm2 – so chosen to simulate
noise from real subjects – was added to the cursor positions.

The model was fit to each of these datasets by taking the best of
100 fits. These best fits always gave a lower cost than did the
generating prior, due to the finite sample size of the artificial data
set. Since our analysis of priors concentrates on the covariance
orientation angles and correlation coefficients between pairs of
elements, we sought to establish that the differences between these
statistics in the generating and fitted priors were small. The
median absolute difference in covariance angle between the
generating prior and the fitted prior was 30 (Figure 9A), compared
to 450 when comparing two randomly-generated priors (Figure 9B).
Likewise, the median absolute difference in correlation coefficient
between the generating prior and the fitted prior was 0.09
(Figure 9C), compared to 0.72 for random priors (Figure 9D). The
fitted correlation was of the wrong sign in 10% of cases, compared
to 50% for random priors.

Model variations. The standard Bayesian observer model
described above correctly assumes the cursor position to be at a
linear transformation of the hand position, v~Th. Three other
observer models, using the same Bayesian principle but making
different assumptions about the transformation, were developed.

The ‘shift’ model assumes the cursor position to be at a shift of
the hand position, v~hzs. The mean shift in the prior m1 is set at
zero. The update equations for the distribution p(s)~N (sjm,L{1)
are Liz1~LizS{1

v and miz1~L{1
iz1½S

{1
v (vi{hi)zLimi". To

select its next hand position, the model applies the inverse of the
mean shift miz1 to the target position, such that the predicted hand
position is h#iz1~tiz1{miz1.

The ‘rotation & scaling’ model assumes transformations to
consist of a rotation and uniform scaling. This was implemented in
polar coordinates centred on the start position, as a shift by w of
the angular coordinate and a multiplication by s of the radial
coordinate. This can be written as,

vh

vr

! "
~

1 0

0 h r

! "
w

s

! "
z

h h

0

! "
,

or in vector form, v~Bxzf. The mean transformation in the
prior m1 has zero rotation and a scaling gain s of unity. The update
equations for the distribution p(x)~N (xjm,L{1) are Liz1~
LizBT

i S{1
v Bi and miz1~L{1

iz1½B
T
i S{1

v (vi{f i)zLimi". The visual
noise covariance Sv was diagonal, with radial variance 1 cm2 and
angular variance 0.12, designed to be isotropic at an eccentricity of
10 cm (as in the standard model we fix the magnitude of the
variance - see above). The model selects its hand positions using
the MAP transformation: h #h~th{ŵw and h #r ~tr=ŝs.

The ‘affine transformations’ model is the most general of all,
assuming the hand position to be subject to a linear transformation
and a shift, v~Thzs. As for the standard model, the
transformation equation can be linearized to v~Am, where
m~(a,b,c,d,e,f )T and

A~
h x 0 h y 0 1 0

0 h x 0 h y 0 1

! "
:

The mean transformation is m1~(1,0,0,1,0,0)T, and the update
equations are identical to those for the standard model. The MAP
transformation m̂m is converted into its linear and shift parts T̂T and
ŝs, for the purpose of choosing the model hand position on the next
trial: h#iz1~T̂T{1

iz1(tiz1{ŝsiz1). The 6|6 Gaussian distribution
over the parameters of the affine transformation did not have
covariance between the linear and shift parameters, i.e.

L~
Labcd 0

0 Lef

 !

,

in order to restrict the number of free parameters to 13 (rather
than a possible 21).

The same trust-region-reflective algorithm as for the standard
model was used to fit the affine model. A slower active-set
algorithm, also implemented by the fmincon function of
Matlab’s Optimization Toolbox, was used to fit the shift and
rotation & scaling models; the choice of optimization method was
not so important when fitting these models, which have fewer
parameters.

Figure 9. Model validation. (A) The distribution of the difference in
covariance orientation angle between pairs of elements in the
generating and fitted priors, aggregated across all six pairings of
elements. (B) The corresponding distribution when random priors are
compared. (C) The distribution of the absolute difference in correlation
coefficient between pairs of elements in the generating and fitted
priors, aggregated across all six pairings of elements. (D) The
corresponding distribution when random priors are compared.
doi:10.1371/journal.pcbi.1001112.g009
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Models were compared on the basis of errors between the
predicted and actual hand positions. These predictive errors were
capped at 20 cm to minimize the effect of outliers, then averaged
across all transformations within an experimental session, and then
across all subjects and sessions. For trials 3–7 of transformed
batches, the Bayesian observer models used priors fit to the second
trial of all transformation batches. For comparing prediction errors
on the second trial itself, 10-fold cross-validation was used so that
complex models did not benefit from over-fitting. The transfor-
mations experienced by a subject in one session were assigned into
10 non-overlapping and evenly-spaced groups. For example, if the

session included 111 transformations, group 1 consisted of
transformations 1, 11, 21, ..., 101, 111; group 2 consisted of
transformations 2, 12, 22, ..., 92, 102, etc. Second-trial hand
positions were predicted for each group using priors fit as normal
to the other nine groups.
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