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Both decision making and sensorimotor control require real-time processing of noisy information streams. Historically these processes
were thought to operate sequentially: cognitive processing leads to a decision, and the outcome is passed to the motor system to be
converted into action. Recently, it has been suggested that the decision process may provide a continuous flow of information to the motor
system, allowing it to prepare in a graded fashion for the probable outcome. Such continuous flow is supported by electrophysiology in
nonhuman primates. Here we provide direct evidence for the continuous flow of an evolving decision variable to the motor system in
humans. Subjects viewed a dynamic random dot display and were asked to indicate their decision about direction by moving a handle to
one of two targets. We probed the state of the motor system by perturbing the arm at random times during decision formation. Reflex
gains were modulated by the strength and duration of motion, reflecting the accumulated evidence in support of the evolving decision.
The magnitude and variance of these gains tracked a decision variable that explained the subject’s decision accuracy. The findings
support a continuous process linking the evolving computations associated with decision making and sensorimotor control.

Introduction
The nervous systems of simple animals channel information
from the senses more or less directly to the motor system. More
elaborate behaviors necessitate freedom from the immediacy im-
posed by evanescent sensory input and the real-time demands of
motor control. Such elaboration arises in the sorts of cognitive
decision making that dominate our mental lives. As such, deci-
sion making may be viewed simultaneously as a model for cog-
nition and as an extension of simple sensorimotor couplings.

A simple form of decision making arises in the setting of per-
ception under ambiguity, when signals are masked by the pres-
ence of noise. For example, the discrimination between two
directions of motion in a noisy random dot display invites an
analogy to a jury deliberating over the evidence to reach a verdict.
For such simple perceptual decisions, much is known about the
neural mechanisms underlying evidence accumulation and the
rendering of a choice. When a choice is ultimately communicated
through an action, say to move the eyes, the evolving decision
process has its neural correlate in the firing rates of neurons in
areas of the brain that play a role in planning eye movements

(Schall, 2001; Sugrue et al., 2005; Gold and Shadlen, 2007;
Glimcher et al., 2008). These and other findings suggest that
the oculomotor system receives a continuous flow of informa-
tion that could help to prepare an eventual action (Bichot et
al., 2001; Gold and Shadlen, 2001; Horwitz et al., 2004).

Such continuous flow (Eriksen and Schultz, 1979) might seem
like a peculiar design for a brain because it challenges the
common-sense notion that decisions concern information bear-
ing on propositions and not the actions that ensue as a result of
the decision. After all, when we view a noisy random dot display,
our categorical decisions do not seem to be about how we will
answer but what we perceive as the correct direction. Moreover, it
may not be possible to draw general conclusions about the flow of
information in humans based on studies in trained monkeys. We
might be inclined to accept that monkeys, which are highly
trained to associate a decision with a motor response, map deci-
sions to actions, whereas humans simply do not.

The human motor system exhibits preparatory activity
(Evarts and Tanji, 1976; Riehle and Requin, 1989) which has been
shown to support the competition between alternative actions
(Cisek and Kalaska, 2002; Cisek, 2007; Michelet et al., 2010), but
it is not known whether such preparatory activity reflects the type
of deliberation that underlies formation of a decision. To exam-
ine this possibility, we studied a decision process that involved
judging the direction of motion in a random dot motion display,
which subjects indicated by moving a handle to one of two choice
targets. We probed the state of the motor system by perturbing
the arm at random moments during decision formation and
measuring the strength of the stretch reflexes with electro-
myography. The gains of these reflexes revealed an approxi-
mately linear dependence on the evolving decision variable (DV)
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suggesting that the human brain does not wait for a decision to be
completed before recruiting the motor system but instead passes
partial information to prepare in a graded fashion for a probable
action outcome.

Materials and Methods
Subjects. We analyzed data from four subjects (2 female, 2 male, age
range: 24 –36 years). A fifth subject was recruited but failed to show
reliable EMG responses. All had normal or corrected-to-normal vision
and reported no neurological disorders. All subjects were right-handed
according to the Edinburgh handedness inventory (Oldfield, 1971). The
Cambridge Psychology Research Ethics Committee approved the exper-
imental procedures and all subjects gave informed consent.

Behavioral task. Subjects were required to decide on the direction of a
random-dot motion stimulus in a two-alternative forced choice task and
to indicate their choice by moving to one of two targets by making either
an elbow flexion or extension movement. The cue to move was a rapid
position perturbation that extended the elbow thereby eliciting a reflex
response (Fig. 1).

Subjects held the handle of a robotic manipulandum (vBOT, Howard
et al., 2009) and their forearm was supported against gravity by an air-
sled, constraining movement to the horizontal plane, !10 cm below
shoulder level. The visual scene from a CRT monitor (Sony, 21 inch) was
projected into the plane of the hand via a mirror (Fig. 1 A). The visual
scene consisted of a 5° diameter circular aperture (1.75 cm radius) with a
home position (0.6 cm radius circle) displayed at the center of the aper-
ture. On either side of the aperture were 5 cm radius targets, aligned with
the elbow flexion and extension directions. Throughout the experiment,
the manipulandum generated a 4 N force at the hand at right angles to the
forearm and in the elbow extension direction (!1.3 Nm at the elbow

joint), thereby preloading the elbow flexor muscles to enhance the base-
line stretch reflex allowing us to assess both increases and decreases in the
reflex gain. Subjects were free to take a rest at any time between trials by
moving their hand "12.5 cm from the home position, at which point the
robotic forces were turned off.

The temporal order of the events in a trial is depicted in Figure 1 B and
C. To start a trial subjects were required to position their hand (position
displayed as a 1-cm-diameter red circle) within the home position. The
display of the hand and home position was then extinguished and re-
placed by a small fixation cross, which subjects were requested to fixate.
After a random delay (500 –3000 ms, mean 1000 ms, exponentially dis-
tributed), a random-dot motion stimulus was presented (Britten et al.,
1992) in the aperture. The apparent motion of the dots on each trial was
either in the elbow flexion or extension direction and the motion
strength of the dots was varied between trials. The dots were white
squares, 0.069° per side (two pixels at a screen resolution of 1024 # 768
on a 21 inch monitor positioned 40 cm from the subject’s eyes) and 19.2
cd/m 2 in luminance, viewed on a black background. The dots were dis-
played in three interleaved sets of equal size. Each set was displayed in one
of three successive video frames (at 75 Hz frame rate) and shown for just
a single frame. Three frames later (40 ms), a percentage of the dots from
that set was redrawn displaced 0.2° (in a direction appropriate for either
flexion or extension) to promote the perception of motion at 5° s $1; the
remainder of the dots were redrawn at random locations. Together,
the three sets produced a dot density of 15.6 dots per degree 2 s $1. The
percentage of coherently moving dots (0, 3.2, 6.4, 12.8, 25.6, 51.2%),
termed “motion strength,” and the direction (flexion or extension) were
randomly varied from trial to trial. We define positive and negative co-
herences to be for motion in the extension and flexion directions, respec-
tively. Viewing duration was also determined randomly on each trial by
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Figure 1. Experimental setup for the direction-discrimination task. A, Subjects hold the handle of a vBOT manipulandum while deciding on the direction of motion (elbow flexion or extension
direction) of a dynamic random dot display. B, Temporal sequence of a single trial. Subjects move to a home position at which point the hand cursor vanishes and a fixation-cross appears. The motion
stimulus appears 500 –3000 ms later and remains on for 100 –1500 ms. The cue for the subjects to respond is a rapid robot-controlled extension of the elbow joint (10 mm in 60 ms) that elicits a
stretch reflex. Subjects then indicate their decision by moving to the target corresponding to the direction of perceived motion, at which point the correct target is displayed. C, The time course of
key experimental parameters.
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drawing from a distribution chosen to approximate a flat hazard func-
tion (ensuring subjects could not anticipate the duration; Luce, 1986):
100 ms plus a random time chosen from an exponential distribution with
mean 300 ms and truncated at 1500 ms.

Subjects were required to decide the direction of dot motion (flexion
or extension direction) and move to the appropriate target. The cue to
initiate movement was the onset of a position-controlled perturbation, at
which point the visual display of the motion was extinguished. The per-
turbation was always in the elbow extension direction and was designed
to move the hand 10 mm in 60 ms at constant speed (PD-controller: K %
1.2 kN m $1; B % 0.8 kN ! s m $1). This perturbation was chosen to elicit
a stretch reflex (R). After the perturbation the hand was again free to
move under the usual background force and subjects moved to either the
flexion or extension target to indicate their choice. Subjects were re-
quired to reach the target within 300 ms and were then informed about
the correct target. For the 0% coherence trials the “correct” target was
randomly chosen. After a familiarization session each subject performed
3600 trials. On each trial the position of the hand was recorded at 1 kHz.

We also conducted control experiments on our subjects in which we
measured the fastest voluntary responses to haptic input without the
stretch reflex loop being involved. To do this, the amplitude of the per-
turbation was reduced to 1 mm (easily detectable, but avoiding the
stretch reflex) and subjects were exposed only to trials with maximum
information: long viewing durations ("0.8 s) and high coherence
(51.2%). Subjects were instructed to move as fast as possible to the cor-
rect target when they felt the perturbation (and the dots were extin-
guished). The control experiment was conducted in a separate session
and consisted of 60 trials of each motion direction presented in a random
order.

Electromyography. Muscle activity was recorded from six muscles. Two
mono-articular elbow flexors (musculus brachioradialis and m. biceps
longum), two mono-articular elbow extensors (m. triceps laterale and m.
triceps longum) and two biarticular muscles (m. biceps brevis and m.
triceps longum). The brachioradialis muscle was excluded from analyses
because it suffered from crosstalk of its surrounding muscles that were
involved in gripping the handle of the manipulandum. Electromyograms
(EMGs) were recorded with a Delsys Bagnoli system (DE-2.1 Single Dif-
ferential Electrode). Electrode positions were chosen to maximize the
signal for the individual muscles and to minimize crosstalk. Before elec-
trode placement, the skin was cleansed with alcohol and an abrasive gel
was applied to improve conductance. The EMG signals were analog
bandpass-filtered between 20 and 450 Hz and sampled at 2 kHz.

Behavioral performance analysis. We analyzed the probability of a cor-
rect choice as a function of viewing duration (t) and motion strength (C,
proportion of coherently moving dots). We fit this behavioral data using
a drift-diffusion model to explain each subject’s proportion of correct
choices as a function of both motion coherence and viewing duration.
The proportion of correct responses depends on the decision variable,
DV, which is modeled by the stochastic differential equation:

dDV ! kCdt " dW, (1)

where k relates the drift rate to the motion strength and W denotes
standard Brownian motion (with unit variance over one second). Given
a coherence and viewing duration, Equation 1 leads to a Gaussian distri-
bution of the DV with mean kCt and variance t. The probability of an
extension or flexion choice is given as the integral of this distribution over
the positive and negative values of the DV, respectively. We fit this one-
parameter diffusion model (parameter k) to each subject’s data so as to
maximize the likelihood of each subject’s choices. Bootstrapping (1000
samples) was used to obtain confidence intervals on the parameter esti-
mates. Preliminary analysis suggested that the data fit was not improved
substantially by the inclusion of an absorbing bound (Kiani et al., 2008).

Calculation of the decision variable on a single trial. For each trial,
we calculated the expected distribution of DV given that subject’s
coherence-dependent drift rate. We can further refine the distribution of
the DV by truncating (and renormalizing) to only positive or negative
values depending on the decision the subject makes on that trial. The
expectation of this truncated Gaussian distribution, denoted DVchoice , is

our estimate of the DV that gave rise to the choice on that trial. However,
the perturbation probes the state of the DV some # ms earlier, due to
processing delays between visual input and any changes in EMG (Resulaj
et al., 2009). We derived an estimate of this delay, #, for each subject (see
Eq. 2 in Electromyographic signal analysis, below). Our interest is in the
DV at t $ #, that is based on the stream of information that could affect
the reflex. Note that this is not simply the truncated part of the DV
distribution at t $#, as it is possible to have a negative DV at t $ # and a
positive DV at t (and vice versa). To estimate the DV at t $ #, we prop-
agate the truncated distribution of DV at t back in time to t $ # using the
Kolmogorov backward equations (Kolmogoroff, 1931). We use the ex-
pectation of this back-propagated distribution, DVpert , in the analyses in
Figure 5 (see Results).

We also analyzed the kinematics of the movement after the perturba-
tion in relation to the DV. For each trial, we calculated the distance the
hand had moved toward the final choice target from its position at the
end of the perturbation at three different points in time: 125, 155, and
255 ms after perturbation onset. For plotting purposes, we normalized
these measures for each time point to have unit SD across all trials for that
time point. We plot these normalized distances as a function of DVpert in
Figure 5 (see Results).

Electromyographic signal analysis. EMG signals were bandpass filtered
(25–250 Hz, fifth order bidirectional Butterworth filter) and full-wave
rectified. Reflex activity is known to scale with background muscle activ-
ity before perturbation onset (Pruszynski et al., 2009). Therefore we
normalized each trial’s EMG by dividing by the mean activity over a 100
ms window before perturbation onset. The mean activity in the time
windows 20 – 45 ms (R1), 45–75 ms (R2) and 75–105 ms (R3) after
perturbation onset was calculated for the individual muscles on individ-
ual trials. R1 and R2 contain no voluntary activity and even R3 has been
shown to contain voluntary activity only on a very limited number of
trials (Pruszynski et al., 2008).

Since EMG activity typically drifted over the course of the experiment
("4 h) we controlled for drift in the individual muscles. We calculated a
150-point chronological running mean and running SD for each muscle.
For each trial, we subtracted the value of this running mean and divided
by the running SD, both centered on that trial. The resulting values were
the normalized muscular activities for the corresponding time windows.

We calculated the difference between the average normalized flexor
muscle activity and the average normalized extensor muscle activity for
each time window, thereby quantifying the magnitude of the reflex re-
sponse and refer to this measure as the reflex gain (G). As stated earlier,
all Gs were normalized to background activity. However, to exclude
changes in reflex responses due to coactivation (Akazawa et al., 1983;
Carter et al., 1993; Lewis et al., 2010) based on accumulated evidence, we
also analyzed muscle activity over the 100 ms window before perturba-
tion onset. All procedures were the same as for the reflex gains, except for
the first normalization step and that we summed the activity over all
muscles. This preprocessing gives us four measures for each trial: G1, G2,
G3 and Pre that reflect muscle activity in the R1, R2, R3 and pre-
perturbation time window.

To test whether the reflex gains and preactivity depended on motion
coherence (C: positive for extension motion direction and negative for
flexion motion direction) and viewing time (t), we fit a phenomeno-
logical model that allows the gains to be zero until a delay # and then
to increase and plateau as a function of time, with the slope and
plateau level dependent on the coherence. We modeled the gains
using a cumulative scaled (half) Gaussian function rising after the
delay #, which represents the time delay between dot motion onset
and changes in reflex gain:

G&t,C' ! !
0 t $ #

k

%"2& #
0

t$#

exp& ' t2/2%2'dt t ( # , (2)

where % % %0 ( %1C and k % k0 ( k1C represent the time constant and
amplitude of tuning, respectively, which can depend on the coherence
level C. We fit equation 2 to the flexion and extension choices from each
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subject (2 fits per subject). We evaluated the null hypothesis that coher-
ence did not affect these curves (H0: k1 % %1 % 0), using an F test based on
combined “extra sum of squares” from the extension and flexion fits for
each subject (total of 4 F tests). We used correct choices only for this
analysis to ensure that the effect of motion strength is not explained by
different mixtures of flexion and extension choices. The analysis also
supplies an estimate of #, the delay between visual input and any changes
in EMG, for each subject (average of the two estimates for extension and
flexion data). This delay is used in the estimation of the DV at the time of
perturbation (see above, Calculation of the decision variable on a single
trial).

Reflex gains are known to be affected by background activity due to
cocontraction (Pruszynski et al., 2009). The analysis of the pre-
perturbation activity was used to exclude systematic changes in gain
as arising from this source.

Prediction of G3 from the decision variable. The key idea of our study is
that reflex activity, especially G3, provides a window on the evolving
decision variable. Therefore, we compared the hypothesis that G3 is ex-
plained by DVpert to two alternative models: (1) that G3 reflects only the
sign of the choice and the amount of viewing time up to the perturbation,
that is sgn( C) ! t, and (2) that G3 reflects the DV leading to the choice on
that trial, without propagation back in time to the moment of the per-
turbation (DVchoice ). To make these comparisons, we performed Gauss-
ian process regression of G3 against each of the three regressors: DVpert ,
DVchoice , and sgn( C) ! t. The models were fit separately to obtain the log
likelihood of the data for each fit. We used Gaussian process regression
for this analysis because it makes minimal assumptions about the shape
of G3 versus time (Rasmussen and Nickisch, 2010). Briefly, while a
Gaussian distribution specifies the distribution of data points in terms of
its mean and covariance, Gaussian process regression specifies a distri-
bution over functions in terms of the mean of the functions and their
autocovariance. Similar to regression, an error model is used to represent
noise in the data. For our Gaussian process regression model we used an
affine function mean (2 parameters: slope and intercept), an autocova-
riance function with squared exponential decay (1 length parameter that
determines the smoothness of the function) and an error model based on
white Gaussian noise (1 variance parameter: Gaussian likelihood model).
Using gpml code (available at Gaussianprocess.org/gpml) the 4 parame-
ters of the model were adjusted to maximize the likelihood of the fit to the
data, which we compared across models.

Mixture analysis. We compared two models that can explain the in-
crease in the average reflex gain as a function of the decision variable: (1)
in a Mixture-of-states (mixture) model, the reflex gain on each trial un-
dergoes a change from an uncommitted to a committed state. The aver-
age reflex gain, therefore, reflects a mixture of gains associated with either
the uncommitted or committed reflex states. Accordingly, for each level
of DV, the distribution of reflex gains is a mixture of two distributions—
the distribution of gains for uncommitted reflexes (with a low mean, )u)
and for committed reflexes (with a high mean, )c). The change in average
gain is explained by a change in the mixing proportions, * and 1 $ *, for
uncommitted and committed distributions, respectively. As DV in-
creases, the mixing proportions change monotonically from mainly
uncommitted (* near 1) to mainly committed (* near 0); (2) in a
Continuous flow model, the reflex gain on each trial undergoes con-
tinuous variation as the DV evolves. That is, the reflex gain is repre-
sented by a single distribution with a mean that increases
monotonically with DV.

Although both models predict a mean reflex gain that increases with
DV, the mixture-of-states model predicts that the gains at any level of DV
come from a mixture of two distributions and this allows us to test
between the models. Specifically, the mixture model predicts that for any
subset of the reflex gain data, the variance of these gains should match the
variance of a mixture of samples drawn from the uncommitted and
committed gain distributions, with the mixing proportions chosen so
that these samples have the same mean as the original data. Conversely,
under the continuous flow model, the variance of the mixture need not
be the same as the original dataset (and under reasonable assumptions,
such as constant or signal-dependent noise on the gain, would be higher).
We therefore compared Hypothesis 1 (H1): no difference between the

variance of the observed data and resampled data to H2: observed data
variance is less than the resampled data variance. H1 would support the
mixture model, whereas H2 would support the continuous flow model.
We used Monte Carlo and bootstrap methods to evaluate these possibil-
ities (Efron, 1987).

We analyzed the data from each subject and each direction of choice
separately for correct choices only. We generated two datasets to reflect
the data coming from the uncommitted and committed reflex gain dis-
tributions (note that even if these datasets actually contain mixtures of
the two distributions this does not affect or bias our analysis). For the
uncommitted and committed datasets, we took the reflex gains from the
200 trials with the lowest and highest DV, respectively.

We generated a smoothed series of means and variance of the reflex
gains based on a 200-point running average across increasing DV. For
each mean, ), of this smoothed series we calculated the mixing propor-
tions * % ()c $ ))/()c $ )u) of the uncommitted states (mean )u) and
(1 $ *) of the committed states (mean )c), required to match this mean.
The mixing parameter, *, determines how many data points to sample
from each dataset. We sampled 200 data points (with replacement) in
total with 200* from the uncommitted and 200(1 $ *) from the com-
mitted dataset and calculated the variance of the associated reflex gains
from this mixture dataset. We repeated this for all values of reflex gain in
the smoothed series (that lay between )u and )c) and summed the vari-
ance across the series and across choice directions. We repeated this
procedure 10,000 times to provide bootstrap samples of the summed
variance for each subject. From the actual data we summed the true
variance of the reflex gains in the same manner. This allows us to test
whether the summed variance of the mixtures was significantly higher
than the actual summed variance of the data (by comparing the actual
summed variance to the 10,000 bootstrap samples).

Note that for the mixture-of-states model we do not model the time to
switch from an uncommitted to committed state. With unambiguous
information, the time to go from background to a fully tuned reflex is
!40 –50 ms (Yang et al., 2011). Given the temporal extent of our dataset,
this would affect only !3% of trials.

In addition, we examined the distributions of G3 for evidence of bi-
modality, using Hartigan’s dip test (Hartigan, 1985). For each subject, we
used all choices (flexion and extension) on the 0% coherence condition
and asked whether at each point in time the distribution of G3 is uni-
modal (as predicted by the drift-diffusion model) or bimodal. We used
both short and long windows () 50 and ) 200 ms of the time point) to
measure the gain, so as to balance temporal resolution of the analysis
against signal-to-noise.

Results
Subjects were required to decide between two possible directions
of motion in a dynamic random-dot display and to indicate their
choice by moving a handle to one of two targets (Fig. 1), requiring
an elbow flexion or extension movement. We varied task diffi-
culty by controlling both the strength (coherence) and duration
of random dot motion. Subjects were instructed to indicate their
direction decision as soon as the random dots were turned off,
which occurred at an unpredictable time from motion onset.
Simultaneous with motion offset, we applied a brief perturbation
that extended the elbow, thereby eliciting a reflex response, which
was quantified by EMG of forearm flexor and extensor muscles.

We first analyzed the subjects’ behavioral accuracy and related
this to a model of decision making. Across all trials, the random
dot motion direction was 50% extension and 50% flexion, and
the choices made by the subjects were 48% in the extension di-
rection and 52% in the flexion direction. Decisions were more
accurate on trials in which the subjects viewed stronger motion
(Fig. 2A,B). Moreover, for each motion strength, the decision
accuracy improved with longer viewing durations (Fig. 2C,D),
consistent with previous findings (Kiani et al., 2008). These ob-
servations indicate that subjects’ decisions were based on an ac-
cumulation of noisy evidence supplied by the motion stimulus
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via the visual cortex. Indeed the choices
are explained by the sign of the decision
variable (DV) from the one-parameter
drift-diffusion model (Eq. 1, see Materials
and Methods, Behavioral performance
analysis): All k-values, which relate the
drift rate to the coherence level (Table 1)
were significantly different from zero
(p * 0.0001), rejecting the null hypothesis
that there are no effects of coherence level.
This one-parameter drift-diffusion model
furnishes the smooth curves in Figure 2A
and C for a typical subject; the curves in
Figure 2B and D are averages of the fits for
each of the subjects.

To assess the state of the motor system
at the time of the perturbation, we re-
corded the EMG of elbow flexor and ex-
tensor muscles in response to the rapid
extension of the elbow joint. These per-
turbations occurred at a random time
from the onset of the random dot motion
(truncated exponential distribution; 100 –
1500 ms, see Materials and Methods, Be-
havioral task), which coincided with the
offset of the motion. Because of visual la-
tencies, the perturbation is the first indi-
cation the subjects had that it was
permissible to indicate their decision. In
fact, visual information from the random
dot motion is likely to be processed for another !200 ms after the
dots turned off (Huk and Shadlen, 2005; Resulaj et al., 2009).
Thus, the perturbation allowed us to assess the state of the motor
system while the decision process was still benefiting from addi-
tional information.

Figure 3 shows a typical subject’s averaged EMG signals elic-
ited by the perturbation. For this example, we show data from
correct trials for intermediate viewing durations in which the
subject viewed weak or strong motion (left and right columns,
respectively). The EMG signals show a classic short latency
stretch reflex over the first 45 ms (Fig. 3, R1), which is evident
mainly in the flexor muscles (Fig. 3, top row) and independent of
motion direction. The EMG signals then begin to diverge in a
manner that depends on the strength and direction of the ran-
dom dot motion: flexor muscles (top row) show larger reflex
responses when the motion supports a flexor response (blue
trace), and extensor muscles (middle row) show larger responses
when the motion supports an extensor response (red trace). The
difference between flexor and extensor EMG signals (bottom
row) suggest that the EMG signals accompanying the two direc-
tions of motion diverge earlier and more substantially for trials in
which the dots moved more coherently (R2 and R3 time win-
dows). On each trial, we used the integral of this difference to
quantify the reflex gain (see Materials and Methods, Electromyo-
graphic signal analysis), in the three time-windows correspond-
ing to short, intermediate, and long latency stretch reflexes (G1,
G2, and G3, respectively).

We first show that G2 and G3 are modulated by both the
strength and duration of the motion stimulus and that G1 is
independent of accumulated evidence. To do this we grouped
together trials sharing the same motion strength and motion di-
rection and supporting the same choice (i.e., correct choices only
for nonzero coherence). Neither the strength nor the direction of

motion influenced G1 [Fig. 4, left column for single subject (A)
and group average (B)]. This is not surprising, as G1 has been
shown not to modulate with task constraints or contextual
changes on the short time scales used in our experiment (see
Pruszynski et al., 2008 for discussion). In contrast, both G2 and
G3 were clearly affected by the strength and direction of motion
as well as the viewing duration. Importantly, the effect of motion
strength was reliable even when incorporating the dominant ef-
fects of direction (i.e., choice) and duration (G2: p * 0.018; G3:
p * 0.002 for all subjects). We also checked for systematic
changes in muscle activation just before the perturbation and
found no indication for time or coherence dependence (p " 0.25
for all subjects). This excludes the possibility that the observed
changes in G2 and G3 are caused by increased coactivation before
perturbation.

The observations in Figure 4A and B are important because
they demonstrate that the reflex gains are affected in a graded
manner even when averaging over data only from correct choices.
Using data for correct choices ensures that the averages portrayed
in Figure 4B do not reflect mixtures of reflex gains from trials
leading to different actions. The grouping in Figure 4A and B and
the related statistics thus provide a conservative test for a graded,
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Figure 2. Performance on the random dot motion task. A, Proportion of correct responses, for one subject, plotted as a function
of motion strength. Data are plotted separately for short, intermediate, and long viewing durations, as indicated. The curves depict
a one-parameter diffusion model (Eq. 1) fit to the entire dataset. Error bars (SE of the proportions) are not visible as they all lie
within the filled circles B, Group average for all subjects. Same conventions as A. Error bars are SEs across subject means and shaded
areas show SEs across the individual subjects’ curves from the fits of the diffusion model. C, Proportion of correct responses, for one
subject, plotted as a function of viewing duration for the 5 nonzero coherence levels. Points are shown at the center of the time bins (!75
trials per point). Error bars show SEs of the proportions, based on the binomial distribution. Colors represent different motion strengths, as
indicated. The solid lines are fits of the drift-diffusion model. D, Group average for all subjects. Same conventions as C. Error bars are SEs
across subject means and shaded areas show SEs across the individual subjects’ curves from the fits of the diffusion model.

Table 1. Parameter fit for the drift-diffusion model (k) to each subject’s choice data
with the 95% CI of the bootstrapped parameters

Subject k EMG delay (ms)

1 6.52 (5.98 –7.11) 157
2 11.52 (10.66 –12.41) 168
3 3.96 (3.44 – 4.62) 158
4 8.75 (8.20 –9.74) 166

EMG delay estimates the lag between visual input and changes in EMG that arise due to sensorimotor and processing
delays.
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motion-dependent change in the reflex. However, this grouping
of trials obscures our central hypothesis that the reflex gains track
the state of the DV. The evolving DV connects the stream of
evidence from the visual system to either choice: it explains the
proportion of correct and incorrect choices for the same motion
stimulus (Fig. 2). To relate the evolving DV to the reflex gains mea-
sured, we must examine all trials associated with the same motion
stimulus (direction and strength). The averaged reflex gains, now
grouped across all trials sharing the same motion strength and direc-
tion, independent of choice (Fig. 4C), shows a qualitative correspon-
dence with the time course of the expected decision variable (Fig. 4C,
inset). We next attempt to quantify this relationship.

Our goal is to estimate the mean DV at the time of perturba-
tion on each trial and relate this to the reflex gains on the same
trial. From the one-parameter fits to the behavioral data we ob-
tain a relation between coherence and the mean drift rate of the
diffusion process which determines the average temporal evolu-
tion of the decision variable for the different motion strengths.
We assume that the subject uses the full evidence stream (i.e., the
viewing duration t) to make a decision, and from this model we
can estimate the distribution of the DV on each trial using all
the motion evidence. From diffusion, the DV has a Gaussian
distribution with mean described by the lines in the inset of

Figure 4C and variance proportional to t.
Moreover, the subject’s choice on each
trial permits further refinement of this
distribution, restricting values to one sign
or the other. The expectation of this trun-
cated Gaussian distribution, denoted
DVchoice , is our estimate of the DV that
gave rise to the choice on that trial. How-
ever, the perturbation probes the state of
the DV some # ms earlier, due to process-
ing delays between visual input and any
changes in EMG. We can estimate # for
each subject using fits to Equation 2 (see
Materials and Methods, Electromyo-
graphic signal analysis). These estimates
are displayed in Table 1 (range 157–168
ms). For each subject, we estimate the dis-
tribution of DV at the time of the pertur-
bation by propagating the distribution of
DVchoice (the truncated distribution, not
its expectation) backwards in time to t $
#. According to our hypothesis, the mean
of this distribution, DVpert , ought to ex-
plain the reflex gains we measured.

Figure 5A shows the reflex gains for the
three time windows (G1-G3) as a function
of DVpert. Both G2 and G3 clearly track
DVpert and, as expected, G1 is independent
of DVpert. This suggests that there is a con-
tinuous flow of accumulated evidence to the
reflex gains and that the relation is almost
linear. We compared the hypothesis that G3
is explained by DVpert to two alternative
models (see Materials and Methods for de-
tails). The first alternative is that G3 reflects
only the direction of random dot motion
and the amount of viewing time up to the
perturbation. This alternative was clearly in-
ferior to the model based on the DVpert

(smallest +log-likelihood across subjects %
380). This excludes the possibility that the measured G3 is simply
associated with the flexion/extension evidence and waiting time. The
DV adds substantial explanatory power.

The second alternative is that G3 reflects DVchoice , the deci-
sion variable leading to the decision on that trial, without prop-
agation back in time to the moment of the perturbation. This
model is much better than the first alternative, but it has weaker
explanatory power than our main hypothesis (smallest +log-
likelihood across subjects % 30). This implies that the extra
machinery required to estimate the DV at the time of the pertur-
bation was warranted. From these analyses, we conclude that the
evolving DV plays an essential role in explaining the reflex gains,
and its state at the time of the perturbation is more informative
than its state at the end of the trial.

The link between DV and reflex gain is further strengthened
by examining the variance of G3 as a function of elapsed time
during decision formation. According to the diffusion model, the
variance of DV increases linearly as a function of time. Since G3 is
monotonically related to the DV, we would expect to observe a
monotonic rise in its variance as well. Figure 6 shows the variance
of G3 as a function of stimulus duration on the 0% coherence
trials. The variance increases approximately linearly for all four
subjects, in accordance with the diffusion model.
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Figure 3. Examples of EMG records used to infer reflex gains. Averaged EMGs are shown for trials ending in correct choices for
two motion strengths (3.2 and 51.2% coherence, left and right columns, respectively) at intermediate viewing durations (270 –350 ms).
Vertical dashed lines indicate the onset of the positional perturbation. Gray areas indicate the time windows of the reflex response: R1
(20 – 45 ms), R2 (45–75 ms), and R3 (75–105 ms). The direction of motion is indicated by color: blue traces for evidence in the flexion
direction and red traces for evidence in the extension direction. For plotting purposes, the EMG traces for each muscle have been normalized
so that the SD (across trials) of the mean EMGs (in the R3 window within a trial) is unity. The first row shows activity for the flexor muscles,
the second for extensor muscles. The third row shows the time course of the difference between flexor and extensor muscles activity. This
measure diverges for flexion and extension evidence with a divergence that is faster for the higher coherence level.
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The gradual changes seen in Figure 5A could arise in two
different ways—through a continuous flow process or a mixture-
of-states process. For a continuous flow process, the reflex gain
would reflect the DV within the trial, varying smoothly between a
low gain and the value attained at the time of the perturbations.
Alternatively, in a mixture-of-states process, rather than track
DV, the reflex gain would only take on one of two states, that is,
either an uncommitted state with low gain or a committed state
with high gain. Therefore, under this model, the gradual change
in Figure 5A would result from averaging across trials in which
subjects were either in an uncommitted low-gain state or a com-
mitted high-gain state.

To evaluate this possibility, we performed a mixture analysis
(see Materials and Methods, Mixture analysis). We reconstructed
reflex gain datasets for intermediate values of DV by mixing sam-
ples from low (uncommitted) and high (committed) values of

DV. We mixed these in the correct proportion to match the mean
reflex gain at the intermediate value of DV. Under a mixture-of-
states process, this reconstructed dataset would have the same
variance as the actual data, whereas for the continuous flow
model this reconstructed dataset would have higher variance
than the data (see Materials and Methods, Mixture analysis). We
found that the variance was significantly higher (p * 0.001 for all
subjects) in the reconstructed datasets, supporting the continu-
ous flow model. This conclusion is further supported by examina-
tion of the distribution of G3 over sequential time-windows on the
0% coherence trials, which exhibit no evidence for bimodality (p "
0.05 across all subjects and all time-windows; Hartigan’s dip test).

A natural question is why the motor system would modulate
the state of its reflex gains during decision formation before an
action is required. One possible answer is preparation. Feedback
gains, such as long latency reflexes, are key parameters in compu-
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Figure 4. Effect of motion strength and viewing duration on reflex gains. The columns depict gains in the three time windows (G1, 20 – 45 ms; G2, 45–75 ms; G3, 75–105 ms). Data are grouped
by motion strength and are plotted as a function of viewing duration (solid lines, dot motion supports extension evidence; dotted lines, dot motion supports flexion evidence). Curves are moving
averages of the data (window %) 100 ms). A, Data for one subject with trials grouped by choice. Only correct choices are included for nonzero motion strengths. Shading indicates SEs across trials.
B, Group average for trials grouped by choice. Same conventions as in A, except shading indicates SEs across the individual subject’s means. C, Group average for all trials, correct and incorrect.
Shading indicates SE across individual subject means. The inset in G3 shows a schematic of the expected DV as a function of time for different motion strengths and directions.
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tational models of sensorimotor control (Todorov and Jordan,
2002; Scott, 2004; Todorov, 2004; Pruszynski et al., 2008). Setting
them ahead of time might support greater efficiency of the ensu-
ing movement. However, it is possible that, although we observe
reflex modulation, it may be too small to induce an observable
change in the kinematics. To test this, we calculated the distance
moved toward the choice target at three time points after the
perturbation onset (see Materials and Methods, Calculation of
decision variable on a single trial). Figure 5B shows that the dis-
tance moved increases with the DVpert even as early as 125 ms
after perturbation onset. A similar relationship is evident be-
tween G3 and distance (data not shown). Therefore, higher
DVpert correlates with a more rapid approach to the choice target,
suggesting that setting the reflex gains before movement is indeed
beneficial for generating rapid movements.

Control experiment
In the control experiment we examined voluntary responses to
tactile input for trials with maximal information, that is, with

long viewing durations and high coher-
ence. Figure 7 plots the difference in EMG
between flexion and extension evidence
for voluntary trials (blue) and for our
standard perturbation trials (red) with the
same durations and coherences. We de-
termined the earliest EMG responses in
the control trials and found a median re-
sponse delay of 132 ms and * 5% of trials
showing a response earlier than 105 ms
after perturbation onset. Less than 1% of
trials showed EMG responses earlier than
90 ms after perturbation onset. We con-
clude that voluntary responses have no
measurable contribution to our G2 (ep-
och ending at 75 ms) and minimal contri-
bution to G3. Importantly, this analysis
demonstrates that the quantities we ana-
lyze in our study reflect true involuntary
reflexes.

Discussion
By probing the state of the motor system
with a sudden perturbation to the arm, we
have shown that reflex gains adjust dy-
namically to track the evolution of a deci-
sion as it is being formed. Even for trials
ending in the same (correct) decision,
the medium- and long-latency reflex
gains (G2 and G3) are modulated in a
graded manner depending on both the
strength and the viewing duration of the
random dot motion stimulus (Fig. 4). It
had been shown previously that G2 and
G3 can be modulated in preparation of
movements that differ in magnitude and
speed (Pruszynski et al., 2008). The novel
extension pursued in our study is to link
these gains to the process of decision
formation.

To connect the reflex gains to the deci-
sion process we exploited a virtue of the
random dot motion task: decision accu-
racy can be explained quantitatively by the
accumulated evidence, termed the deci-

sion variable, in support of one or the other alternative. This
single decision variable represents the integral of the noisy mo-
tion evidence and is thus affected by both motion coherence and
viewing duration (Heekeren et al., 2004; Bogacz et al., 2006; Gold
and Shadlen, 2007; Heekeren et al., 2008; Donner et al., 2009). In
reaction time versions of the random dot motion task, the choice
accuracy and reaction time are explained by a drift-diffusion
model in which the DV reaches a positive or negative bound,
which terminates the process and determines the choice outcome
(Gold and Shadlen, 2002, 2007; Smith and Ratcliff, 2004). In our
task, subjects were cued when to move and we therefore used a
simplified (one-parameter) diffusion model that assumes accumu-
lation of all evidence provided by the display. The decision is simply
based on the sign of the DV at the end of the trial.

The drift-diffusion model explains the choice data for each of
the subjects (Fig. 2) and allows us to infer the state of the decision
variable—its probability distribution—at the time of the pertur-
bation on each trial. The evolution of the expected value of the
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Figure 5. Reflex gains and kinematics track the decision variable. The DV was derived from the drift-diffusion model fit to each
subject’s choice function and estimated at the time of the perturbation (DVpert ). For these graphs, the DVs, reflex gains, and
kinematics were combined for both directions of dot motion by changing the sign of the DV and reflex gains for trials with flexion
motion. A, Reflex gains as a function of DVpert for one typical subject (left) and the group average (right). Curves are running means
of the single-trial estimates across ) 0.2 units of DV. Shading indicates SEs across trials. B, Movement excursion toward the choice
target as a function of DVpert for one typical subject (left) and the group average (right). Movement excursion was calculated for
three time points (125, 155, and 255 ms) after perturbation onset. As the excursions at these time points have very different
magnitudes, for plotting purposes the movement excursions have been normalized so that the SD (across all trials) for each time
point is unity. Curves are running means, as in A.

Selen et al. • Deliberation in the Motor System J. Neurosci., February 15, 2012 • 32(7):2276 –2286 • 2283



DV demonstrates a striking correspondence to the modulation of
the G2 and G3 (but not G1) reflex gains (Fig. 5A). These gains,
therefore, reflect the evolving decision variable that ultimately
supports the subject’s choice behavior. Importantly, they do not
simply reflect the outcome of the decision, but are instead privy
to the brain’s deliberations as a decision is being formed. In our
study we asked the subjects to respond to the direction of dot

motion with the congruent direction of hand movement. In
monkeys, when the directions of motion and motor responses are
incongruent, such that leftward motion requires a rightward eye
movement, signatures of the DV remain apparent in the motor
system, but now obey the new logic—support for whatever the
new associated direction is (Gold and Shadlen, 2003). We suspect
the same would be true for humans.

The novelty in our design and analysis is that it allows us to
measure noninvasively the influence of an evolving decision vari-
able in a critical time frame of decision formation. However, in
our design, subjects could have made an early decision and been
simply in a holding state awaiting the perturbation. Our analyses
argue against this based on two observations: (1) The data are
better described by a continuously changing gain than a mixture
(across trials) of the gains associated with uncommitted and
committed (“holding”) states; (2) the gains for G2 and G3 are
diverging even with the shorter stimulus durations (Fig. 4).
Therefore, even for small values of DV (e.g., early time points,
low coherence), the reflex gains are sensitive to changes in DV
(Fig. 5A).

In the current study we have measured the reflex gains and
show that there is supraspinal modulation of their gain during
decision making, reflecting changes in excitability of the response
pathways. The rationale for studying the reflex gains in relation to
decision making is that such feedback gains are key control pa-
rameters within the framework of optimal feedback control
(OFC). This framework unifies diverse motor functions, such as
planning, on-line control, coordination, and the interaction of
effort and noise (for reviews see Scott, 2004; Todorov, 2004;
Diedrichsen et al., 2010). OFC proposes that the sensorimotor
system acts to minimize a cost function that is usually a combi-
nation of accuracy and effort. To achieve this, the nervous system
implements feedback controllers with adjustable time-varying
gains. Normally, these feedback gains contribute to establishing
the smooth movement trajectories that transport the hand from
rest to target, for example. However, it has been shown that also
before movement these feedback gains, i.e., intermediate and
long latency responses, are modulated to optimize task perfor-
mance (Kurtzer et al., 2008; Pruszynski et al., 2008). We extended
this observation by showing that the same feedback gains are
affected by an evolving cognitive process of decision making lead-
ing to movement selection. Importantly, reflex gains were not
modulated by the outcome of a decision (e.g., a mixture of un-
committed and committed states) but instead track the accumu-
lating evidence in a graded fashion.

From an evolutionary perspective, it is perhaps unsurprising
that information about a stimulus might affect structures in the
brain that control the motor system that will ultimately act upon
that information. Yet, according to traditional accounts of deci-
sion making, the process of deciding should complete before the
motor system is brought into play (Donders 1868/1969; Stern-
berg, 1969). Such an architecture, termed sequential flow, seems
consistent with the common sense notion that decisions are
about propositions or categories, independent of what, if any-
thing, we will do as a consequence (Freedman and Assad, 2011).
A central executive or other high level processor (Sigman and
Dehaene, 2005) makes the decision and communicates the an-
swer to the appropriate motor system if and when an action is
required. On this view, the motor system is informed of the de-
cision outcome, not partial evidence.

To the contrary, our findings suggest that there is continuous
flow from the decision making process to set feedback gains in the
motor system. This is consistent with neurophysiological studies
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Figure 6. Variance of G3 reflex gain as a function of viewing duration. The variance of G3 was
calculated over a sliding window of 250 ms for the 0% coherence trials. Data are plotted sepa-
rately for the four subjects.
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Figure 7. Comparison of voluntary and reflex muscular activity. The voluntary activity is in
response to a tactile input that does not elicit a reflex response. The difference in EMG between
flexion and extension evidence is plotted for voluntary trials (blue) and for our standard pertur-
bation trials (red) with the same durations ("0.8 s) and coherences (51.2%). For the standard
perturbation trials the trace starts to diverge from zero at !50 ms, whereas for the voluntary
trials this divergence starts at !90 ms. This indicates that in standard perturbation trials there
is activity before the voluntary response.
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in nonhuman primates that use microstimulation to elicit an eye
movement during the decision making process (Kustov and Rob-
inson, 1996; Gold and Shadlen, 2000, 2003; Horwitz et al., 2004;
Connolly et al., 2009). Without the benefit of the present find-
ings, the continuous flow exhibited by nonhuman primates on
this task might be interpreted as evidence that such species lack a
central executive. Instead, we provide evidence that the human
brain also supplies the motor system with partial evidence to
prepare circuitry for an eventual act.

Complementary evidence in support of continuous flow in
humans comes from the analysis of movements of a computer
mouse during a lexical decision task (Spivey et al., 2005) and from
analyses of sequences of movements suggesting concurrent pro-
cessing of visual information in a variety of tasks (Resulaj et al.,
2009; Song and Nakayama, 2009; Purcell et al., 2010). These and
other findings support the idea that motor preparation incorpo-
rates not just readiness to act but qualitative information leading
to that action (Coles et al., 1985; Michelet et al., 2010). The pres-
ent result shows that this information is not restricted to antici-
pation (Tanji and Evarts, 1976; Miller et al., 1992; Crammond
and Kalaska, 2000) or certainty (Bastian et al., 2003), but incor-
porates a rich representation of a decision variable, that is, the
accumulation of evidence leading to a choice.

Our findings do not imply that decisions are always tied to
actions. Even in a task like ours, decisions do not feel like they are
about an action but about a property of the visual stimulus, sug-
gesting the presence of some higher order decision process.
Nonetheless, the motor system receives a continuous flow of ev-
idence as the decision evolves, presumably because there is some
benefit for preparation. That said, we often make abstract deci-
sions about propositions independent of what, if anything, we
will do as a consequence. In such cases, the motor system is un-
likely to receive partial information about the evolving decision
(Gold and Shadlen, 2003). However, even here it seems likely that
partial evidence will flow continuously, not to the effectors of
action, but to the implementers of subsequent decisions (Cisek,
2007; Shadlen et al., 2008).

The dividends of continuous flow include readiness and com-
putational savings when an action is required. But we suspect a
deeper connection between the brain’s apparatus for evaluating
evidence and the control of motor function. Both decision mak-
ing and motor control require acting in real time on streams of
noisy evidence. Thus, both rely on inference, termination rules,
time constraints, and predicted costs— operations that are best
understood with the tools of probability theory (Knill and
Pouget, 2004; Körding and Wolpert, 2006; Tenenbaum et al.,
2006; Anderson, 2011). While we have shown flow from the
decision-making process to the motor system, we expect ele-
ments of the motor task, such as the range of possible actions or
the value effort/costs associated with them, to influence the set-
tings of the decision-making process, such as the tradeoff be-
tween decision speed and accuracy. Therefore, we suspect that
the flow demonstrated in our experiment may be part of a larger
bidirectional interplay between the brain processes that underlie
decision making and motor control.
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