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Abstract

Rationality principles such as optimal feedback control and Bayesian infer-
ence underpin a probabilistic framework that has accounted for a range of
empirical phenomena in biological sensorimotor control. To facilitate the
optimization of flexible and robust behaviors consistent with these theories,
the ability to construct internal models of the motor system and environ-
mental dynamics can be crucial. In the context of this theoretic formalism,
we review the computational roles played by such internal models and the
neural and behavioral evidence for their implementation in the brain.

339

A
nn

u.
 R

ev
. C

on
tr

ol
 R

ob
ot

. A
ut

on
. S

ys
t. 

20
19

.2
:3

39
-3

64
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
ol

um
bi

a 
U

ni
ve

rs
ity

 o
n 

05
/0

6/
19

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://doi.org/10.1146/annurev-control-060117-105206
https://doi.org/10.1146/annurev-control-060117-105206
https://www.annualreviews.org/doi/full/10.1146/annurev-control-060117-105206


AS02CH14_Wolpert ARI 23 March 2019 9:32

1. INTRODUCTION

Over the last half century, the hypothesis that the nervous system constructs predictive models
of the physical world to guide behavior has become a major focus in neuroscience (1–3). In his
1943 book, Craik (4, p. 61) was perhaps the first to suggest that organisms maintain internal
representations of the external world and to provide a rationale for their use:

If the organism carries a “small-scale model” of external reality and of its own possible actions within
its head, it is able to try out various alternatives, conclude which is the best of them, react to future
situations before they arise, use the knowledge of past events in dealing with the present and future, and
in every way to react in a much fuller, safer, and more competent manner to the emergencies that face it.

In this cognitive view of prospective simulation, an internal model allows an organism to con-
template the consequences of actions from its current state without actually committing itself
to those actions. Since Craik’s initial proposal, internal models have become widely implicated
in various brain subsystems with a diverse range of applications in biological control. Beyond
facilitating the rapid and flexible modification of control policies in the face of changes in the
environment, internal models provide an extraordinary range of advantages to a control system,
from increasing the robustness of feedback corrections to distinguishing between self-generated
and externally generated sensory input. However, there tends to be confusion as to what exactly
constitutes an internal model. This confusion has likely arisen because the internal model hypoth-
esis has independently emerged in distinct areas of neuroscientific research prompted by disparate
computational motivations. Furthermore, there are intricate interactions between various types of
internal models maintained by the brain. Here, we aim to provide a unifying account of biological
internal models, review their adaptive benefits, and evaluate the empirical support for their use in
the brain.

In order to accomplish this, we describe various conceptions of internal models within a com-
mon computational formalism based on the principle of rationality. This principle posits that an
agent will endeavor to act in the most appropriate manner according to its objectives and the
“situational logic” of its environment (5, p. 147; 6) and can be formally applied to any control task
and data set. It provides a parsimonious framework in which to study the nervous system and the
mechanisms by which solutions to sensorimotor tasks are generated. In particular, probabilistic
inference (7) and optimal feedback control (OFC) (8) together provide concise computational ac-
counts for many sensory and motor processes of biological control. In Section 2, we describe how
these theories characterize optimal perception and action across a wide variety of scenarios. Re-
cently, technical work has integrated these two theories into a common probabilistic framework
by developing and exploiting a deeper theoretic equivalence (9, 10). This framework will pro-
vide the mathematical architecture necessary to integrate putative internal modeling mechanisms
across a range of research areas, from sensorimotor control to behavioral psychology and cognitive
science. In Section 3, we review theoretical arguments and experimental evidence supporting the
contribution of internal models to the ability of nervous systems to produce adaptive behavior in
the face of noisy and changing environmental conditions at many spatiotemporal scales of control.

2. INTERNAL MODELS IN THE PROBABILISTIC FRAMEWORK

Bayesian inference and optimal control have become mainstream theories of how the brain pro-
cesses sensory information and controls movement, respectively (11). Their common theme is
that behavior can be understood as an approximately rational solution to a problem defined by

340 McNamee ·Wolpert

A
nn

u.
 R

ev
. C

on
tr

ol
 R

ob
ot

. A
ut

on
. S

ys
t. 

20
19

.2
:3

39
-3

64
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
ol

um
bi

a 
U

ni
ve

rs
ity

 o
n 

05
/0

6/
19

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



AS02CH14_Wolpert ARI 23 March 2019 9:32

task objectives and a characterization of the external environment, sensory pathways, and muscu-
loskeletal dynamics—that is, they are normative solutions. In this section, we contextualize these
theories in each of their respective domains of perception and action and review the experimental
techniques employed to acquire evidence supporting their implementation in the nervous system.

2.1. Bayesian Inference in the Brain

In Bayesian inference, probabilities are assigned to each possible value of a latent state variable zone
wishes to estimate, reflecting the strength of the belief that a given value represents the true state of
the world (7). It is hypothesized that the brain encodes a prior p(z) reflecting its beliefs regarding
the state zbefore any sensory information has been received, as well as a probabilistic internal model
describing the dependency of sensory signals y on the latent state z, known as a generative model in
computational neuroscience (12). On receiving sensory information y , this probabilistic internal
model can be used to compute a likelihood p(y |z) that quantifies the probability of observing the
signals y if a particular state z is true. Using these probabilistic representations of state uncertainty,
Bayes’s rule prescribes how the prior p(z) and likelihood p(y |z) are combined in a statistically
optimal manner to produce the posterior probability distribution p(z|y):

p(z|y) = p(y |z)p(z)
p(y)

, 1.

where p(y) = ∑
z p(y |z)p(z) is known as the evidence for the observation y . In the context

of sensory processing, Bayesian inference is proposed as a rational solution to the problem of
estimating states of the body or environment from sensory signals afflicted by a variety of sources
of uncertainty (Figure 1a). Sensory signaling is corrupted by noise at many points along the
neural pathway, including transduction, action potential generation, and synaptic transmission
(13). Furthermore, relevant state variables are typically not directly observable and therefore must
be inferred from stochastic, statistically dependent observations drawn from multiple sensory
modalities.

Several lines of behavioral evidence suggest that humans and other animals learn an internal
representation of prior statistics and integrate this representation with knowledge of the noise
in their sensory inputs in order to generate state estimates through probabilistic inference. First,
many studies have exhibited a stimulus prior (e.g., the location of an object or duration of a tone)
to a subject performing a task and shown that the prior is internalized and reflected in behavior
(14–17). Importantly, as predicted by Bayes’s rule, this prior bias is greater when the stimulus
signal is less reliable and thus more uncertain. Second, other studies have assumed a reasonable
prior so as to explain a range of phenomena and illusions as rational inferences in the face of
uncertainty. For example, a prior over the direction of illumination of a scene (18–20) or over the
speed of object motion (21) can explain several visual phenomena, such as how we extract shape
from shading or perceive illusory object motion.

Beyond the sensorimotor domain, Bayesian methods have also been successful in explaining
human reasoning. In the cognitive domain, the application of Bayesian principles using relatively
complex probabilistic models has provided normative accounts of how humans generalize from
few samples of a variable (22), make inferences regarding the causal structure of the world (23),
and derive abstract rules governing the relationships between sets of state and sensory variables
(24). Behavioral analyses that estimate high-dimensional cognitive prior representations from low-
dimensional (e.g., binary) responses have been used to demonstrate that humans maintain a prior
representation for faces and that this naturalistic prior is conserved across tasks (25).
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Initial state

Figure 1
The roles of internal models in sensorimotor control. (a) Perception. Sensory input y is used to estimate the ball’s state z0, which is
uncertain due to noise along the sensory pathway and the inability to directly observe the full state of the ball (e.g., its spin and velocity).
Bayes’s rule is used to calculate the posterior; the inset shows an example of a posterior over one component of position and velocity.
(b) Simulation. An internal dynamical model pfw simulates the forward trajectory z of the ball. At short timescales, this internal
modeling is necessary to overcome delays in sensory processing, while at longer timescales, the predictive distribution pfw(z|z0) of the
ball’s trajectory can be used for planning. (c) Motor planning. An internal simulation of the ball’s trajectory and prospective movements
is evaluated in order to generate an action plan. The player may have to decide between body reorientations in order to play a forehand
or backhand. (d ) Optimal feedback control. Once a motor plan has been specified, motor commands u are generated by an optimal
feedback controller that uses a state estimator to combine sensory feedback and forward sensory predictions (based on an efference copy
of the motor command) in order to correct motor errors online in task-relevant dimensions ( green arrows).

2.1.1. Bayesian forward modeling. Bayesian computations can be performed with respect to the
current time or used to predict future states, as hypothesized by Craik. Consider the problem of
tracking a ball during a game of tennis (see Figure 1b). The response of any given photoreceptor
in a player’s retina can provide only delayed, noisy signals regarding the position y of the ball at
a given time. From the probabilistic point of view, this irreducible uncertainty in the reported
ball position is captured by a distribution p(y). Since a complete characterization of the state z
of the tennis ball, including its velocity, acceleration, and spin, is not directly observable, this
information must be inferred from position samples transduced from many photoreceptors at
different time points in concert with the output of an internal model. Given a previously inferred
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posterior p(zt |y:t) over possible ball states zt based on previous sensory input y:t up to time t, an
internal forward model pfw(zt+1|zt) can be used to predict the state of the ball at the future time
step t + 1:

p(zt+1|y:t) =
∫

zt

pfw(zt+1|zt)p(zt |y:t)dz. 2.

The internal forward dynamical model pfw must take physical laws, such as air resistance and
gravity, into account. From a perceptual point of view, new sensory information yt+1 can then be
integrated with this predictive distribution in order to compute a new posterior distribution at
time t + 1:

p(zt+1|y:t+1) ∝ p(yt+1|zt+1)p(zt+1|y:t). 3.

This iterative algorithm, known as Bayesian filtering, can be used to track states zt , zt+1, . . . of
the body or the environment in the presence of noisy and delayed signals for the purposes of
state estimation (see Section 3.2). The extrapolation of latent states over longer timescales can
be used to predict states further into the future for the purposes of planning movement (see
Section 3.3). The results of such computations are advantageous to the tennis player. On a short
timescale, they enable the player to predictively track the ball with pursuit eye movements, while
on a longer timescale, the player can plan to move into position well in advance of the ball’s arrival
in order to prepare the next shot.

In the brain, the dichotomy between the prediction step (based on a forward model) and
the observation step is reflected, at least partially, in dissociated neural systems. With respect
to velocity estimation, a detailed analysis of retinal circuitry has revealed a mechanism by which
target velocity can be estimated at the earliest stages of processing (26). Axonal conductance delays
endow retinal cells with spatiotemporal receptive fields that integrate information over time and
fire in response to a preferred target velocity. Furthermore, the retina contains a rudimentary
predictive mechanism based on the gain control of retina ganglion cell activity, whereby the initial
entry of an object into a cell’s receptive field causes it to fire, but the activity is then silenced (27).
By contrast, more complex predictions (e.g., motion under gravity) require higher-order cortical
processing.

2.1.2. Neural implementation. Theories have been developed regarding how neuronal machin-
ery could perform the requisite Bayesian calculations. These theories fall into two main classes:
population coding mechanisms in feedforward network architectures (28–31) and recurrently con-
nected dynamical models (32–34). In the former, neural receptive fields are proposed to tile the
sensory space of interest such that their expected firing rates encode the probability [or log prob-
ability (29)] of a particular value of the encoded stimulus. For example, this implies that each
neuron in a population would stochastically fire within a limited range of observed positions of
a reach target and fire maximally for its preferred value. Importantly, the variability in neural
activity can then be directly related to the uncertainty regarding the precise stimulus values that
generated the input in a manner consistent with Bayesian theory (28). Thus, across neurons, the
population activity would reflect the posterior probability distribution of the target position given
sensory input. This neural representation can then be fed forward to another layer of the net-
work to produce a motor response. Such population codes are able to implement Bayes’s rule in
parsimonious network architectures and account for empirical neural activity statistics during sen-
sorimotor transformations (30), Bayesian decision-making (35), and sensory computations such
as cue integration (28), filtering (36), and efficient stimulus coding (31).

Although the functional implications of population codes can be directly related to Bayesian
calculations, they do not incorporate the rich dynamical interactions between neurons in cortical
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circuits or model the complex temporal profiles of neural activity that follow transient stimu-
lus input (37, 38). These considerations have motivated the development of dynamical models
of cortex with recurrent connectivity that approximate Bayesian inference (32, 34), though the
characterization of this class of models from a computational point of view remains an ongoing
challenge (39). In contrast to the probabilistic population coding approach, it has been postulated
that neural variability across time reflects samples from a probability distribution based on a direct
coding representation (40). In this model, population activity encodes sensory variable values (as
opposed to the probability of a particular variable value) such that the variability of neural activity
across time reflects the uncertainty in the stimulus representation. When sensory input is received,
neural circuits generate samples from the posterior distribution of inferred input features. In the
absence of external input, spontaneous activity corresponds to sampling from the prior distribu-
tion, which serves as an internal model of the sensory statistics of the environment. In support of
this theory, the change in spontaneous visual cortical activity during development has been shown
to be consistent with the gradual learning of a generative internal model of the visual environment,
whereby spontaneous activity adapted to reflect the average statistics of all visual input (41).

2.2. Optimal Feedback Control

Bayesian inference is the rational mathematical framework for perception and state estimation
based on noisy and uncertain sensory signals. Analogously, optimal control has been a dominant
framework in sensorimotor control to derive control laws that optimize behaviorally relevant cri-
teria and thus rigorously comply with the principle of rationality (11) (Figure 1d). Understanding
how natural motor behavior arises from the combination of a task and the biomechanical char-
acteristics of the body has driven the theoretic development of optimal control models in the
biological context (42, 43). Initially, models were developed that posited that, for a given task,
planning specified either the desired trajectory or the sequence of motor commands to be gen-
erated. These models typically penalized lack of smoothness, such as the time derivative of hand
acceleration (known as jerk) (44) or joint torques (45). The role of any feedback was, at best, to re-
turn the system to the desired trajectory. These models aimed to provide a normative explanation
for the approximately straight hand paths and bell-shaped speed profiles of reaching movements.
However, these models are accurate only for movement trajectories averaged over many trials
and do not account for the richly structured trial-to-trial variability observed in human motor
coordination (8).

A fundamental characteristic of biological control is that the number of effector parameters to
be optimized far exceeds the dimensionality of the task requirements. For example, infinitely many
different time series of hand positions and joint angles can be used to achieve a task such as picking
up a cup. Despite the plethora of possible solutions, motor behavior is relatively stereotyped both
across a population and for an individual person, suggesting that the nervous system selects actions
based on a prudent set of principles. How the brain chooses a particular form of movement out of
the many possible is known as the degrees-of-freedom problem in motor control (46). A ubiquitous
empirical observation in goal-directed motor tasks is that effector states tend to consistently covary
in a task-dependent manner (8, 47–50). In particular, these covariances tend to be structured in
such a way as to minimize movement variance along task-relevant dimensions while allowing
variability to accumulate in task-irrelevant dimensions.

OFC was introduced (8, 11) in the motor control context in order to provide a normative
solution to the degrees-of-freedom problem of motor coordination and, in particular, to develop
a broad account of effector covariance structure and motor synergy as a function of task require-
ments. In this class of control laws, the core distinction with respect to optimal (feedforward or
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desired trajectory) control is that sensory feedback is integrated into the production of motor out-
put. OFC policies continually adapt to stochastic perturbations [for example, due to noise within
the motor system (51)] and therefore predict temporal patterns of motor variability that have been
widely tested in behavioral experiments. An emergent property of OFC, known as the minimum
intervention principle, explains the correlation structures of task-oriented movements (8). Simply
put, as movements deviate from their optimal trajectories due to noise, OFC specifically predicts
that only task-relevant deviations will be corrected (8). For example, when reaching to a target that
is either narrow or wide, subjects tend to make straight-line movements to the nearest point on
the target (Figure 2a). However, when the hand is physically perturbed early in the movement,
corrections are seen only when reaching toward the narrow target, not when reaching toward
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Figure 2
The minimum intervention principle and exploitation of redundancy. (a) Unperturbed movements (black traces, showing individual
hand movement paths) to narrow or wide targets tend to be straight and to move to the closest point on the target. Hand paths during
the application of mechanical loads (red traces, in response to a force pulse that pushes the hand to the right) delivered immediately after
movement onset, which disrupt the execution of the planned movement, obey the principle of minimum intervention: For a narrow
target (left), the hand paths correct to reach the target, whereas for a wide target (right), there is no correction, and the hand simply
reaches to another point on the target. (b) Participants make reaching movements to targets using cursors. In a two-cursor condition,
each hand moves its own cursor (black dots) to a separate target. In a one-cursor condition, the cursor is displayed at the average location
of the two hands, and participants reach with both hands to move this common cursor to a single target. During the movement, the left
hand could be perturbed with a leftward (red ) or rightward (blue) force field or could remain unperturbed. (c) When each hand controls
its own cursor, there is only one combination of final hand positions for which there is no error (center of circle). Optimal feedback
control predicts that there will be no correlation between the endpoint positions (the black circle shows a schematic distribution of
errors). When the two hands control the position of a single cursor, many combinations of final hand positions give zero error (black
diagonal line, task-irrelevant dimension). Optimal feedback control predicts correction in one hand to deviations in the other, leading to
negative correlations between the final locations of the two hands, so that if one hand is too far to the left, the other compensates by
moving to the right (black ellipse). (d ) This panel shows the movement trajectories for the left and right hands in response to the
perturbations shown in panel b (one-cursor condition). The response of the right hand to perturbations of the left hand shows
compensation only for the one-cursor condition, in accordance with the predictions of optimal feedback control. In addition, negative
correlations in final hand positions can be seen in unperturbed movements for the one-cursor condition but not for the two-cursor
condition (not shown). Panel a adapted from Reference 52 with permission; panels b–d adapted from Reference 53.
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the wide target (Figure 2a); because the perturbation does not affect task success in the latter
case, there is no reason to intervene. Intervening would actually be counterproductive, because it
typically requires more energy and adds noise into the reach.

In sensorimotor control, the specification of a particular behavioral task begins with a defi-
nition of what constitutes the relevant internal state x (which may include components corre-
sponding to the state of the arm and external environment) and control signals u. In general,
the state variables should include all the variables, which, together with the equations of motion
describing the system dynamics and the motor commands, are sufficient to predict future configu-
rations (in the absence of noise). A discrete-time stochastic dynamics model can then be specified
that maps the current state xt and control inputs ut to future states xt+1. This model is charac-
terized by the conditional probability distribution penv(xt+1|xt , ut). For reaching movements, for
example, the state x could correspond to the hand position, joint angles, and angular velocities,
and the control signals u might correspond to joint torques. Given these dynamics, the aim of
optimal control is to minimize a cost function that includes both control and state costs. The state
cost Q rewards states that successfully achieve a task (such as placing the hand on a target), while
R represent an energetic cost such as that required to contract muscles (for a discussion of cost
function specification in the biological context, see the sidebar titled Costs, Rewards, Priors, and
Parsimony). To make predictions regarding motor behavior, a control policy π [a mapping from
states to control signals ut = π (xt)] is optimized to minimize the total cumulative costs expected
to be incurred. This objective Vπ (xt) is known as the cost-to-go of a control policy (in control

COSTS, REWARDS, PRIORS, AND PARSIMONY

Critics of optimal control theories of motor control point out that one can always construct a cost function to
explain any behavioral data (at the extreme, the cost can be the deviations of the movement from the observed
behavior). Therefore, to be a satisfying model of motor control, it is crucial that the assumed costs, rewards, and
priors be well motivated and parsimonious. Initial work on optimal motor control used cost functions that did
not correspond to ecologically relevant quantities. For example, extrinsic geometric smoothness objectives such
as jerk (44) or the time derivative of joint torque (45) do not straightforwardly relate to biophysically important
variables. By contrast, OFC primarily penalizes two components in the cost. The first is an energetic or effort cost.
Such costs are widespread in animal behavior modeling and provide well-fitting cost functions when simulating
muscle contractions (54) and walking (55, 56), suggesting that such movements tend to minimize metabolic energy
expenditure. By representing effort as an energetic cost discounted in time, one can account for both the choices
animals make and the vigor of their movements (57). The second penalized component, task success, is typically
represented by a cost on inaccuracy.

When experimenters place explicit costs or rewards on a task (such as movement target points), people are
usually able to adapt their control to be close to optimal in terms of optimizing such explicit objectives (58–60).
The parsimony and the experimental benefits of a model where the experimenter specifies costs at the task level are
not present in oracular motor control models, which requires an external entity to provide a detailed prescription
for motor behavior. Early theories of biological movement were often inspired by industrial automation. Research
tended to focus on how reference trajectories for a particular task were executed rather than planned. For any given
task, there are infinitely many trajectories that reach a desired goal and infinitely many others that do not, and the
problem of selecting one is off-loaded to a trajectory oracle, reminiscent of industrial control engineers serving
as the deus ex machina. As a theory of biological movement, this is problematic. Oracles can select movement
trajectories not necessarily to solve the task in an optimal manner (as would be the goal in industrial automation)
but rather to fit movement data, which leads to an overfitting problem (7).
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theory) or value function (in reinforcement learning, where it typically quantifies cumulative ex-
pected rewards rather than costs):

Vπ (xt) = Q(xt) + R[π (xt)] + Ext+1∼penv[·|xt ,π (xt )] [Vπ (xt+1)] . 4.

This characterization of the cost-to-go function, known as a Bellman equation, intuitively im-
plies that the optimal controller balances the instantaneous costs in the current state xt with the
minimization of expected future cumulative costs in the subsequent state xt+1.

This formulation is quite general. When applied to motor behavior, costs are often modeled as a
quadratic function of states and control signals, while the dynamics model penv(xt+1|xt , ut) typically
takes the form of a linear equation with additive Gaussian noise (43). Furthermore, the noise term
is adapted to scale with the magnitude of the control input, as found in the nervous system (51).
This signal-dependent noise arises through the organization of the muscle innervation. The force
that a single motor neuron can command is directly proportional to the number of muscle fibers
that it innervates. When small forces are generated, motor neurons that innervate a small number
of muscle fibers are active. When larger forces are generated, additional motor neurons that
innervate a larger number of muscle fibers are also active. This is known as Henneman’s size
principle. Recruiting a larger number of muscle fibers from a single alpha motoneuron (the final
neuronal output of the motor system) increases the variability of the output, leading to variability
in the force that is proportional to the average force produced by that muscle (61, 62). This OFC
problem formulation provides a reasonable balance between capturing the essential features of
the sensorimotor task and enabling the accurate computation of optimal control policies; linear-
quadratic-Gaussian problems with signal-dependent noise can be solved by the iteration of two
matrix equations that converge exponentially fast (43).

Variants of this OFC model have been tested in many experiments involving a variety of
effectors, task constraints, and cost functions (48, 49, 63–66). For example, studies have examined
tasks in which a person’s hands either move separate cursors to individual targets or together
move a single cursor (whose location is the average position of the two hands) to a single target
(Figure 2b). The predictions of OFC differ for these two scenarios (Figure 2c). In the former,
perturbations to each arm can be corrected only by that arm, so a perturbation to one arm should
be corrected only by that arm. However, in the latter situation, both arms could contribute to the
control of the cursor, so perturbations to one arm should also be corrected by the other arm. Indeed,
force perturbations of one hand result in corrective responses in both hands, consistent with an
implicit motor synergy, as predicted by OFC (Figure 2d). Moreover, in a directed force production
task, a high-dimensional muscle space controls a low-dimensional finger force. Electromyography
recordings revealed task-structured variability in which the task-relevant muscle space was tightly
controlled and the task-irrelevant muscle space showed much greater variation, again confirming
predictions of OFC (64).

OFC is also a framework in which active sensing can be incorporated. Although engineering
models typically assume state-independent noise, in the motor system the quality of sensory input
can vary widely. For example, a person’s ability to localize their hand proprioceptively varies
substantially over the reaching workspace. Including state-dependent noise in OFC means that
the quality of sensory input will depend on the actions taken. The solution to OFC leads to a
trade-off between making movements that allow one to estimate the state accurately and task
achievement. The predictions of the optimal solution match those seen in human participants
when they are exposed to state-dependent noise (67).

Recent work has focused on the adaptive feedback responses within an OFC framework. One
way to measure the magnitude of the visuomotor response (positional gain) is to apply lateral
visual perturbations to the hand during a reaching movement. On such a visually perturbed trial,
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a robotic interface is typically used to constrain the hand within a simulated mechanical channel
so that the forces into the channel are a reflection of the visuomotor reflex gain. Such studies
have shown that the reflex gains are sensitive to the task and that the gains increase when the
perturbation is task relevant and decrease when it is not (63). Moreover, the reflex gain varies
throughout a movement in a way that qualitatively agrees with the predictions of OFC (66).
Reflexive responses due to muscle stretch caused by mechanical perturbation can be decomposed
into short-latency (<50 ms) and long-latency (50–100 ms) components, both of which occur before
the onset of volitional control (>100 ms) (68). Short-latency components are generated by a spinal
pathway (i.e., the transformation of proprioceptive feedback into motor responses occurs at the
level of the spinal cord), while long-latency components are transcortical in nature (i.e., the cortex
is involved in modulating the reflex). The long-latency response specifically can be voluntarily
manipulated based on the behavioral context (69), and it has been suggested that this task-based
flexibility is consistent with an optimal feedback controller operating along a pathway through
the primary motor cortex (70). Neural activity in the primary motor cortex reflects both low-level
sensory and motor variables (71) while also being influenced by high-level task goals (72). This
diversity of encoding is precisely what one would expect from an optimal feedback controller (73).
Further evidence in favor of this hypothesis includes the fact that primary motor cortex neurons
appear to encode the transformation of shoulder and elbow perturbations into feedback responses
(74).

2.3. Duality Between Bayesian Inference and Optimal Control

Classically, a control policy u = π (x) deterministically maps states to control signals. However, in
the probabilistic framework, it is more natural to consider stochastic policies p(u|x) representing
distributions over possible control commands conditioned on a given state. Furthermore, it is
impossible for the brain to represent a deterministic quantity with perfect precision; therefore,
probabilistic representations may be a more appropriate technical language in the sensorimotor
control context (75). This probabilistic perspective allows us to review a general duality between
control and inference.

It has long been recognized that certain classes of Bayesian inference and optimal control
problems are mathematically equivalent or dual. Such an equivalence was first established between
the Kalman filter and the linear-quadratic regulator (76) and has recently been generalized to
nonlinear systems (9, 77). The intuition is as follows. Suppose a person is performing a goal-
directed reaching movement and wants to move their hand to a target. The problem of identifying
the appropriate motor commands can be characterized as the minimization of a cost-to-go function
(Equation 4). However, an alternative but equivalent approach can be considered: The person
could imagine their hand successfully reaching the target at some point in the future and infer the
sequence of motor commands that was used to get there. The viewpoint transforms the control
problem into an inference problem.

More technically, the duality can be described using trajectories of states x := (x0, . . . , xT )
and control signals u := (u0, . . . , uT −1) up to a horizon T . Consider the conditional probability
defined by p(g|x) ∝ exp [−Q (x)], where Q (x) := ∑T

i=0 Q(xt) is the above-mentioned state-
dependent cost encoding the desired outcome (Equation 4). The variable g can be thought of as
a pseudo-observation of a successfully completed goal-directed task. The task is considered to be
more likely to be successful if less state costs are incurred. The control cost R(u) := ∑T −1

i=0 R(ut)
can be absorbed in a prior over control signals p(u) ∝ exp [−R (u)], with more costly control
commands [large R(u)] being more unlikely a priori. Bayesian inference can then be employed to
compute the joint probability of motor outputs u and state trajectories x given the observation of
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a successful task completion g:

p(x, u|g) ∝ penv(x|x0, u)p(g|x)p(u) = penv(x|x0, u)e−Q(x)e−R(u). 5.

The posterior probabilities of control signals u that are most likely to lead to a successful comple-
tion of the task g along a particular state trajectory x are proportional to the expected cumulative
costs, as in the optimal control perspective (Equation 4). By marginalizing over state trajectories
x, one obtains the posterior p(u|g) as a sum-over-paths of the costs incurred (78). This perspective
has led to theoretic insights within a class of control problems known as Kullback-Leibler control
(10) or linearly solvable Markov decision processes (79), where the control costs take the form of
a Kullback-Leibler divergence. In particular, this class of stochastic optimal control problems is
formally equivalent to graphical model inference problems (10) and is a relaxation of deterministic
optimal control (80). Thus, approximate inference methods, which have provided inspiration for
neural and behavioral models of the brain’s perceptual processes, may also underpin the algorithms
used by the brain during planning (see Section 3.3).

2.4. What Constitutes an Internal Model in the Nervous System?

In neuroscience, neural representations of a person’s body or environment—that is, internal
models—are conceptualized in a wide range of theories regarding how the brain interprets, pre-
dicts, and manipulates the world. Most generally, one may consider a representation of the joint
distribution p(x, z, y, u) between time series of sensory inputs y, latent states z, internal states x,
and motor signals u. Together, the latent external states z and internal states x reflect the state
of the world from the point of view of the nervous system, but we separate them conceptually to
reflect a separation between environmental and bodily states. This probabilistic representation can
be considered a complete internal model. Such a formulation contains within it various charac-
terizations of internals models from different disciplines of neuroscience as conditional densities.
Therefore, the phrase internal model can be used for markedly different processes, and we sug-
gest that it is important for researchers to be explicit about what type of internal model they are
investigating in a given domain. Here, we attempt to nonexhaustively categorize the elements that
can be considered part of an internal model in sensorimotor control:

� Prior models: These models comprise priors over sensory signals, p(y); motor signals, p(u);
and states of the world, p(z) and p(x). The world is far from homogeneous, and numerous
studies have shown that people are adept at learning the statistical regularities of sensory
inputs and the distributions of latent states (for a review, see Reference 40).

� Perceptual inference models: A class of internal models known in computational neuro-
science as recognition models compute latent world states (such as objects) given sensory
input, p(z|y), and are postulated to be implemented along higher-order sensory pathways
culminating in the temporal lobes. Generative models, by contrast, are models that describe
processes that generate sensory data. A generative model may be captured by the joint dis-
tribution between sensory input and latent variables, p(y, z), or computed from the product
of a state prior and the conditional distribution of sensory inputs given latent world states,
p(y|z). Given sensory input, the generative model can be inverted via Bayes’s rule to compute
the probabilities over the latent states that may have generated the observed input. Further
uses of such generative models are predictive coding (81) and reafference cancellation (see
Section 3.1).

� Sensory and motor noise models: The brain is sensitive to the noise characteristics and
reliability of our sensory and motor apparatus (13). On the sensory side, to calculate p(y|z)
involves not only a transformation but also knowledge of the noise on the sensory signal y
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itself. On the motor side, the control output u is also corrupted by noise, and knowledge of
this noise can be used to refine the probability distribution of future states x. Maintaining
such noise models aids the nervous system in accurately planning and implementing control
policies that are robust to sensory and motor signal corruption (82).

� Forward dynamical models: In general, we think of a forward dynamical model as a neural
circuit that can take the present estimated state, x0, and predict states in the future. This
could model the passive dynamics, p(x|x0), of the system or also use the current motor output
to predict the state evolution, p(x|x0, u).

� Cognitive maps, latent structure representation, and mental models: Abstract relational
structures between state variables (possibly pertaining to distinct objects in the world) may
be compactly summarized in the conditional probability distributions p(zn|z1, . . . , zn−1) of a
graphical model. Such representations can also be embedded in continuous internal spaces
such that a metric on the space encodes the relational strength between variables. These
models can be recursively organized in hierarchies, thus facilitating the low-dimensional
encoding of control policies and the transfer of learning across contexts (for a review of
latent structure learning in the context of motor control, see Reference 83).

The probabilistic formalism allows one to relate internal models across a range of systems
within the brain. However, it leaves many aspects of the internal models unspecified. Inter-
nal models can be further defined by a structural form that links inputs and outputs. For ex-
ample, they may capture linear or nonlinear relationships between motor outputs and sensory
inputs, as in the relationship between joint torques and future hand positions. They may con-
tain free parameters that can be quickly adapted in order to adapt to contextual variations, such
as the length and inertia of limbs during development. They can also be further specified by the
degree of approximation in the model implementation. Consider the problem of predicting the
future from the past. At one extreme, one can generate simulations from a rich model containing
internal variables that directly reflect physically relevant latent states, such as gravitational forces
and object masses. On the other hand, a mapping from current to future states can be learned
directly from experience without constructing a rich latent representation. Such mappings can
be encapsulated compactly in simple heuristic rules, which may provide a good trade-off between
generalizability and efficiency. Finally, internal models span a range of spatiotemporal resolutions.
Some internal models, such as those involved in state estimation, compute forward dynamics on
very short spatiotemporal scales, such as centimeters and milliseconds (see Section 3.2), while
others, such as those used during planning, simulate over timescales that are orders of magnitude
longer, such as kilometers and days (see Section 3.3).

2.5. Probabilistic Forward and Inverse Models

In the sensorimotor context, internal models are broadly defined as neural systems that mimic
musculoskeletal or environmental dynamical processes (84, 85). An important feature of putative
internal models in sensorimotor control is their dynamical nature, which distinguishes internal
models from other neural representations of the external world that the brain maintains, such
as recognition models, as studied in perception. This dynamical nature is reflected in the brain
computations associated with internal models. Whether contributing to state estimation, reaffer-
ence cancellation, or planning, internal forward and inverse models relate world states across a
range of temporal scales. In the tennis example described above, internal models may be used to
make anticipatory eye movements in order to overcome sensory delays in tracking the ball. By
incorporating a motor response, internal models can be used to simulate the ballistic trajectory
of a tennis ball after it has been struck. This leads to a classical theoretic dissociation of internal
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models into different classes (85). Internal models that represent future states of a process (ball
trajectories) given motor inputs (racquet swing) are known as forward models. Conversely, models
that compute motor outputs (the best racquet swing) given the desired state of the system at a
future time point (a point-winning shot) are known as inverse models.

In the probabilistic formalism, the internal forward model pfw can be encapsulated by the
distribution over possible future states xt+1 given the current state xt and control signals ut :

pfw(xt+1|xt , ut). 6.

A prediction regarding a state trajectory x := (x0, . . . , xT) can be made by repeatedly applying
the forward model pfw(x|x0, u) = ∏T

i=1 pfw(xi |xi−1, ui−1). By combining a forward model pfw and
a prior over controls p(u), the inverse model p inv can be described in the probabilistic formalism
using Equation 5. Consider the problem of computing the optimal control signals that implement
a movement toward a desired goal state g. This state could be, for example, the valuable target
position of a reach movement. An inverse model is then a mapping from this desired state to a
control policy u∗ that can be identified with the posterior probability distribution computed via
control inference (Equation 5):

p inv(u|g) ∝
∫

x
pfw(x|x0, u)p(g|x)p(u)dx, 7.

u∗ = argmax
u

p inv(u|g). 8.

Typically, in the sensorimotor control literature, a mapping from desired states at each point in
time to the control signals u∗ is described as an inverse model. This mapping requires the explicit
calculation of a desired state trajectory x∗. This perspective can be embedded within the proba-
bilistic framework by setting p(g|x∗) = 1 and p(g|x) = 0 for all other state trajectories x �= x∗. By
contrast, in OFC and reinforcement learning, motor commands are generated based on the current
state without the explicit representation of a desired state trajectory. Alternatively, motor com-
mands may depend on previous control signals independent of the current state. Such approaches
to policy representation can serve as models of motor chunking in sensorimotor control.

3. THE ROLES OF INTERNAL MODELS IN BIOLOGICAL CONTROL

3.1. Sensory Reafference Cancellation

Sensory input can be separated into two streams: afferent information, which is information that
comes from the external world, and reafferent information, which is sensory input that arises
from our own actions. From a sensory receptors point of view, these sources cannot be separated.
However, it has been proposed that forward models are a key mechanism that allows us both to
determine whether the sensory input we receive is a consequence of our own actions and to filter
out the components arising from our own actions so as to be more attuned to external events, which
tend to be more behaviorally important (86). To achieve this, a forward model receives a signal
of the outgoing motor commands and uses this so-called efference copy to calculate the expected
sensory consequences of an ongoing movement (87). This predicted reafferent signal (known as
the corollary discharge in neurophysiology, although this term is now often used synonymously
with efference copy) can then be removed from incoming sensory signals, leaving only sensory
signals due to environment dynamics.

This mechanism plays an important role in stabilizing visual perception during eye movements.
When the eyes make a saccade to a new position, the sensory representation of the world shifts
across the retina. In order for the brain to avoid concluding that the external world has been
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displaced based on this retinal flow, a corollary discharge is generated from outgoing motor
commands and integrated into the visual processing of the sensory input (88). A thalamic pathway
relays signals about upcoming eye movements from the superior colliculus to the frontal eye
fields, where it causally shifts the spatial receptive fields of target neurons in order to cancel the
displacement due to the upcoming saccade (89). Furthermore, the resulting receptive field shifts
are time locked by temporal information pertaining to the timing of the upcoming saccade carried
by the corollary discharge.

Perhaps the best-worked-out example of the neural basis of such a predictive model is in the
cerebellum-like structure of the weakly electric fish (90). These animals generate pulses (or waves)
of electrical discharge into the water and can then sense the field that is generated to localize
objects. However, the field depends on many features that the fish controls, such as the timing
of the discharge and the movement and posture of the fish. The cerebellum-like structure learns
to predict the sensory consequences (i.e., the field) based on both sensory input and the motor
command and remove this from the signal so that any remaining signal reflects an unexpected
input that pertains to objects in the environment. A recent review (91) elucidated the detailed
mechanism of synaptic modulation (anti-Hebbian learning) and the manner in which the sensory
prediction is built up from a set of basis functions.

3.2. Forward State Estimation for Robust Control

An estimate of the current state of an effector is necessary for both motor planning and control.
There are only three sources of information that can be used for state estimation: sensory inputs,
motor outputs, and prior knowledge. In terms of sensory input, the dominant modality for such
state estimation is proprioceptive input (i.e., from receptors in the skin and muscles). While
blind and deaf people have close to normal sensorimotor control, the rare patients with loss of
proprioceptive input are severely impaired in their ability to make normal movements (92, 93).
The motor signals that generate motion can also provide information about the likely state of the
body. However, to link the motor commands to the ensuing state requires a mapping between
the motor command and the motion—that is, a forward dynamic model (2)—in an analogous
fashion to many observer models in control theory. There are at least two key benefits of such an
approach. First, the output of the internal model can be optimally combined with sensory inflow
via Bayesian integration (Section 2.1), minimizing state estimation variance due to noise in sensory
feedback (94). Second, using the motor command (which is available in advance of the change in
state) with the internal model makes movement more robust with respect to errors introduced by
the unavoidable time delays in the sensorimotor loop. Feedback-based controllers with delayed
feedback are susceptible to destabilization since control input optimized for the system state at a
previous time point may increase, rather than decrease, the motor error when applied in the context
of the current (unknown) state (85). Biological sensorimotor loop delays can be on the order of
80–150 ms for proprioceptive to visual feedback (68). However, a forward model that receives an
efferent copy of motor outflow and simulates upcoming states can contribute an internal feedback
loop to effect feedback control before sensory feedback is available (2, 3).

3.2.1. State estimation and sensorimotor control. Predictive control is essential for the rapid
movements commonly observed in dexterous behavior. Indeed, this predictive ability can be
demonstrated easily with the so-called waiter task. If you hold a weighty book on the palm of
your hand with an outstretched arm and use your other hand to remove the book (like a waiter
removing objects from a tray), the supporting hand remains stationary. This shows our ability
to anticipate events caused by our own movements in order to generate the appropriate and
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exquisitely timed reduction in muscle activity necessary to keep the supporting hand still. By con-
trast, if someone else removes the book from your hand, even with vision of the event, it is close
to impossible to keep the hand stationary even if the removal is entirely predictable (95).

Object manipulation also exhibits an exquisite reliance on anticipatory mechanisms. When an
object is held in a precision grip, enough grip force must be generated to prevent the object from
slipping. The minimal grip force depends on the object load (i.e., weight at rest) and the frictional
properties of the surface. Subjects tend to maintain a small safety margin so that if the object is
raised, the acceleration causes an increase in the load force, requiring an increase in the grip force
to prevent slippage. Recordings of the grip and load force in such tasks show that the grip force
increases with no lag compared with the load force even in the initial phase of movement, thus
ruling out the possibility that grip forces were adapted based on sensory feedback (96, 97). Indeed,
such an anticipatory mechanism is very general, with no lag in grip force modulation seen when
a person jumps up and down while holding the object. By contrast, if the changes in load force
are externally generated, then compensatory changes in grip force lag by approximately 80 ms,
suggesting a reactive response mechanism (98).

In contrast to internal models that estimate the state of the body based on efferent copies,
internal models of the influence of external environmental perturbations are also utilized in state
estimation. An analysis of postural responses to mechanical perturbations showed that long-latency
feedback corrections were consistent with a rapid Bayesian updating of estimated state based on
forward modeling of delayed sensory input (99). Furthermore, trial-to-trial changes in the motor
response suggested that the brain rapidly adapted to recent perturbation statistics, reflecting the
ability of the nervous system to flexibly alter its internal models when exposed to novel envi-
ronmental dynamics. Although forward modeling can be based on both proprioceptive and visual
information, the delays in proprioceptive pathways can be several tens of milliseconds shorter than
those in visual pathways. During feedback control, the brain relies more heavily on propriocep-
tive information than on visual information (independent of the respective estimation variances),
consistent with an optimal state estimator based on multisensory integration (100).

Certain actions can actually make state estimation easier, and there is evidence that people may
expend energy to reduce the complexity of state estimation. For example, in a task analogous to
sinusoidally translating a coffee cup without spilling its contents, people choose to move in a way
that makes the motion of the contents more predictable, despite the extra energetic expense that
this requires (101). Such a strategy could potentially minimize the computational complexity of
internal forward modeling and thereby reduce errors in state estimation.

3.2.2. Neural substrates. Extensive research has been conducted with the aim of identifying the
neural loci of putative forward models for sensorimotor control. Two brain regions in particular
have been implicated: the cerebellum and the parietal cortex. It has long been established that the
cerebellum is important for motor coordination. Although patients with cerebellar damage can
generate movement whose gross structure matches that of a target movement, their motions are
typically ataxic and characterized by dysmetria (typically the overshooting or undershooting of
target positions during reaching) and oscillations when reaching (intention tremor) (102). In par-
ticular, these patients experience difficulty in controlling the inertial interactions among multiple
segments of a limb, which results in greater inaccuracy of multijoint movements compared with
single-joint movements. An integrative theoretic account (2, 103) suggested that these behavioral
deficits could be caused by a lack of internal feedback and thus that the cerebellum may contain in-
ternal models that play a critical role in stabilizing sensorimotor control. A range of investigations
across multiple disciplines has supported this hypothesis, including electrophysiology (104–106),
neuroimaging (97), lesion analysis (103, 107), and noninvasive stimulation (108). In particular, the
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above-mentioned ability of humans to synchronize grip force with lift, which provided indirect be-
havioral evidence of an internal forward model, is impaired in patients with cerebellar degeneration
(107). Optimal control models have enabled researchers to estimate impairments of the forward
dynamic models in cerebellar patients making dysmetric reaching movements (109). In this study,
hypermetric patients appeared to overestimate arm inertia, leading them to overshoot the target,
while hypometric patients tended to underestimate arm inertia, resulting in the opposite pattern
of deviations from optimality. The authors were therefore able to compute dynamic perturbations
that artificially increased (for hypermetric patients) or decreased (for hypometric patients) arm
inertia, thus compensating for the idiosyncratic biases of individual patients. This study highlights
the contribution of optimal control and internal models to a detailed understanding of a particular
movement disability and the possibility of therapeutic intervention.

The parietal cortex has also been implicated in representing forward state estimates. A subre-
gion of the superior parietal lobule known as the posterior parietal cortex contains neural activity
consistent with forward state estimation signaling (110), which may be utilized for visuomotor
planning (111). Indeed, transcranial magnetic stimulation of this region, resulting in transient in-
hibition of cortical activity, impaired the ability of subjects to error correct motor trajectories based
on forward estimates of state (112). In another study, following intracranial electrical stimulation
of the posterior parietal cortex, subjects reported that they had made various physical movements
even though they had not actually done so and electromyography had detected no muscle activity
(113). This illusory awareness of movement is consistent with the activation of a forward state
representation of the body. A study based on focal parietal lesions in monkeys reported a double
dissociation between visually guided and proprioceptively guided reach movement impairments
and lesions of the inferior and superior parietal lobules, respectively (114). This finding suggests
that forward representations of state are localized to different areas of the posterior parietal cortex
depending on the sensory source of state information.

3.3. Learning and Planning Novel Behaviors

The roles of internal models described thus far operate on relatively short timescales and do
not fit Craik’s original conception of their potential contribution to biological control, which
concerned the internal simulation of possible action plans over longer timescales in order to
predict and evaluate contingent outcomes. Through the computational lens of optimal control,
Craik’s fundamental rationale for internal modeling falls within the broad domain of algorithms
by which the brain can acquire new behaviors, which we review in this section.

3.3.1. Reinforcement learning and policy optimization. Control policies can be optimized
using a range of conceptually distinct but not mutually exclusive algorithms, including reinforce-
ment learning (115) and approximate inference (116). Reinforcement learning provides a suite of
iterative policy-based and value-based optimization methods that have been applied to solve OFC
problems. Indeed, initial inspiration for reinforcement learning was derived from learning rules
developed by behavioral psychologists (117). Theoretical and empirical analyses of reinforcement
learning methods indicate that a key algorithmic strategy that can aid policy optimization is to
learn estimates of the cost-to-go function Vπ introduced in Section 2.2. Once Vπ is known, the
optimal controls u∗(xt) are easily computed without explicit consideration of the future costs [by
selecting the control output that is most likely to lead to the subsequent state xt+1 with minimal
Vπ (xt+1)]. A related and even more direct method is to learn and cache value estimates (known
as Q-values) associated with state–action combinations (115). Thus, value estimates are natural
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quantities for the brain to represent internally, as they are the long-term rationales for being in a
given state and define optimized policies.

In many reinforcement learning algorithms, a key signal is the prediction error, which is the
difference between expected and actual rewards or costs. This signal can be used to iteratively
update an estimate of the cost-to-go and is guaranteed to converge to the correct cost-to-go
values (although the learning process may take a long time) (115). Neural activity in the striatum
of several mammalian species (including humans) appears to reflect the reinforcement learning
of expected future reward representations (118, 119). Indeed, reward-related neurons shift their
firing patterns in the course of learning, from signaling reward directly to signaling the expected
future reward based on cues associated with later reward, consistent with a reward prediction error
based on temporal differences (118).

The main shortcoming of such model-free methods for learning optimal control policies is that
they are prohibitively slow. When these methods are applied to naturalistic motor control tasks
with high-dimensional, nonlinear, and continuous state spaces (corresponding to the roughly 600
muscles controlled by the nervous system), potentially combined with complex object manipula-
tion, it becomes clear than human motor learning is unlikely to be based on these methods alone
due to the time required to produce control policies with human-level performance. Furthermore,
environment dynamics can transform unexpectedly, and the goals of an organism may change de-
pending on a variety of factors. Taken together, all of this suggests that humans and animals must
integrate alternative algorithms in order to flexibly and rapidly adapt their behavior. In particular,
internal forward models can be used to predict the performance of candidate control strategies
without actually executing them, as originally envisaged by Craik (4) (Figure 1c). These internal
model simulations and evaluations (which operate over relatively long timescales compared with
the internal forward models discussed above) can be integrated with reinforcement learning (115)
and approximate inference methods (120). Thus, motor planning may be accomplished more
quickly and robustly using internal forward models. Indeed, trajectory rollouts (121) and local
searches (122) form key components of many state-of-the-art learning systems.

3.3.2. Prediction for planning. Planning refers to the process of generating novel control poli-
cies internally rather than learning favorable motor outputs from repeated interactions with the
environment (Figure 1c). Internal forward modeling on timescales significantly longer than those
implemented in state estimation contributes significantly at this point in the sensorimotor control
process. Ultimately, once a task has been specified and potential goals identified, the brain needs
to generate a complex spatiotemporal sequence of muscle activations. Planning this sequence at
the level of muscle activations is computationally intractable due to the curse of dimensionality
(123). Specifically, the number of states (or volume, in the case of a continuous control prob-
lem) that must be evaluated scales exponentially with the dimensionality of the state space. This
issue similarly afflicts the predictive performance of forward dynamic models, where state-space
dimensionality is determined by the intricate structure and nonstationarity of the musculoskeletal
system and the wider external world. Biological control hierarchies have been described across
the spectrum of behavioral paradigms, from movement primitives and synergies in motor control
(124) to choice fragments in decision-making (125). From a computational efficiency perspective,
these hierarchies allow low-level, partially automated components to be learned separately but
also flexibly combined in order to generate broader solutions in a hierarchical fashion, thus econ-
omizing control by enabling the nervous system to curtail the number of calculations it needs to
make (126). For example, one learns to play the piano not by going through music note by note,
but rather by practicing layers and segments of music in isolation before combining these fluent
chunks together (127).
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Given the hierarchical structure of the motor system, motor commands may be represented,
and thus planned, at multiple levels of abstraction. Different levels of abstraction are investigated in
distinct fields of neuroscience research that focus on partially overlapping subsystems. However,
here we take a holistic view and do not focus on arbitrary divisions between components of
an integrated control hierarchy. At the highest level, if multiple possible goals are available, a
decision may be made regarding which is to be the target of movement. Neuroimaging (128) and
single-unit recordings (129) suggest that scalar values associated with goal states are encoded in
an area of the brain known as the ventromedial prefrontal cortex. Comparing such value signals
allows a target to be established. Selection among food options is often used to study neural value
representation since food is a primary reinforcer. In such an experiment, when confronted with
novel goals that have never been encountered before, the brain synthesizes value predictions from
memories of related goals in order to make a decision (130). The precise mechanism by which this
is accomplished is still under investigation, but these results require an internal representation
that is sensitive to the relational structure among food items, possibly embedded in a feature
space of constituent nutrients, and a generalization mechanism with which new values can be
constructed.

This internal representation and mechanism can be embedded in the probabilistic framework
described here. Let x be a vector of goal features. The value v can then be modeled as the latent
variable to be inferred, and a value model p(v|x) can be learned using experienced goal–value
pairs and used to infer the value of a novel item. Analogously, in the example of tennis, a player
who has scored points from hitting to the backhand and also by performing drop shots may
reasonably infer that a drop shot to the backhand will be successful. In psychology and neuro-
science, the process by which decision variables in value-based and perceptual decision-making
are retrieved and compared is described mechanistically by evidence integration or sequential
sampling models (131). Within the probabilistic framework elaborated in Section 2, these models
can be considered iterative approximate inference algorithms (132). There is both neural (36)
and behavioral (133) evidence for their implementation in the brain. These sampling processes
have been extended to tasks that require sequential actions over multiple states of control (134).
A network of brain structures, primarily localized to prefrontal cortical areas, has been hypoth-
esized to encode an internal model of the environment at the task level that relates relatively
abstract representations of states, actions, and goals (135, 136). From a probabilistic perspective
(see Section 2.5), this internal model can then be inverted via Bayesian inference to compute
optimal actions (132). One heuristic strategy to accomplish this computation is to simply retrieve
memories of past environment experiences based on state similarity as a proxy for internal for-
ward modeling. In the human brain, this process appears to be mediated by the hippocampus
(137).

Once a goal has been established, the abstract kinematic structure of a movement and the
final state of the end effector (e.g., a hand) may be planned, a stage that may be referred to as
action selection. One line of evidence for the existence of such motor representations comes
from studies of the hand path priming effect (138). In these studies, participants are required to
make obstacle-avoiding reaching movements. However, when cued to do so in the absence of
obstacles, the participants appear to take unnecessarily long detours around the absent obstacles.
Such suboptimal movements are inconsistent with OFC but are thought to be due to the effi-
cient reuse of the abstract spatiotemporal form of the previously used movements. When such
representations are available in the nervous system (as in the hand path priming experiments), it is
possible that they may be reused in forward modeling simulations during motor planning. When
combined with sampling strategies (120), the retrieval of abstract motor forms could provide a
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b   Physical reasoning c   Decision-making

Noisy initial
state samples Forward model

pfw(z|z0)

. . .

. .
 .

. .
 .

. . .

Sensory input y

z0
(1)ˆ

~ p(z0|y)z0
(i)ˆ

zT
(1)ˆ

z0
(N)ˆ zT

(N)ˆ

ffall  = ffall (z   )(i)ˆ∑
i = 1

fdir  = fdir (z    )
(i)ˆ∑

i = 1

N

N

N

1

N
1

a   Perception

State estimation
p(z0|y) ∝ p(y|z0)p(z0)

Figure 3
Physical reasoning. Participants must decide whether a complex scene of blocks will fall and, if so, the direction of the fall. A model of
their performance combines perception, physical reasoning, and decision-making. (a) A Bayesian model of perception uses the sensory
input y to estimate a participant’s belief p(z0|y) regarding the initial environment state, including the position, geometry, and mass of
the blocks. (b) Stochastic simulations based on samples from the posterior are performed using a noisy and approximate model of the
physical properties of the world. The simulations use a forward model to sample multiple state trajectories (superscripts) over time
(subscripts): ẑ(i ) = (ẑ(i )

0 , . . . , ẑ(i )
T ). (c) The outputs of this intuitive physics engine can then be processed to make judgments, such as the

proportion of the tower block that will fall ( f̄fall) and the direction of the fall ( f̄dir). Experiments have indicated that humans are adept at
making rapid judgments regarding the dynamics of such complex scenes, and these judgments are consistent with predictions generated
using this model, which includes approximate Bayesian methods combined with internal forward models. Figure adapted from
Reference 139.

computational foundation for the mental rehearsal of movement, which could be relatively efficient
if applied at a high level of abstraction in the motor hierarchy.

In tasks involving complex object interactions, it may be particularly important to internally
simulate the impact of different control strategies on the environment dynamics in order to avoid
catastrophic outcomes, as envisaged by Craik. Humans are able to make accurate judgments
regarding the dynamics of various visual scenes involving interacting objects under the influence
of natural physical forces (Figure 3). This putative intuitive physics engine (139), which combines
an internal model approximating natural physics with Monte Carlo sampling procedures, could
be directly incorporated into motor planning within the probabilistic framework. Consider, for
example, the problem of carrying a tray piled high with unstable objects. By combining internal
simulations of the high-level features of potential movement plans with physical reasoning about
the resulting object dynamics, one would be able to infer that it is more stable to grip the tray on
each side rather than in the center and thus avoid having the objects fall to the floor. Thus, internal
forward models can make a crucial contribution at the planning stage of control by simulating
future state trajectories conditional on motor commands. It may be necessary to implement this
processing at a relatively high level of the motor hierarchy in order to do so efficiently, given the
complexity of the simulations. In the context of the tray example, the critical feature of the motor
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movement in evaluating the stability of the objects is the manner in which the tray is gripped.
Thus, simulating the large number of possible arm trajectories that move the hand into position is
irrelevant to the critical success of the internal modeling. Identifying the essential abstract features
of movement to input into a forward modeling process may be a crucial step in planning complex
and novel movements.

4. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a formal integration of internal models with the rationality frameworks of
Bayesian inference and OFC. In doing so, we have used the probabilistic formalism to review
the various applications of internal models across a range of spatiotemporal scales in a unified
manner. OFC provides a principled way in which a task can be associated with a cost, leading to
an optimal control law that takes into account the dynamics of the body and the world as well as
the noise processing involved in sensing and actuation. The theory is consistent with a large body
of behavioral data. OFC relies on state estimation, which itself relies on internal models that are
also of general use in a variety of processes and for which there is accumulating behavioral and
neurophysiological evidence.

Major hurdles remain in understanding OFC in biology. First, it is unclear how a task specifies
a cost function. While for a simple reaching movement it may be easy to use a combination of
terminal error and energy, the links to cost are much less transparent in many real-world tasks.
For example, when a person needs to remove keys from a pocket or tie shoelaces, it is difficult to
calculate the cost involved. Indeed, recent work in robotics and machine learning has sought to
learn abstract goal representations for use during planning and control rather than relying on a
cost function (140). Second, although OFC can consider arbitrarily long (even infinite) horizons,
people clearly plan their actions under finite-horizon assumptions by establishing a task-relevant
temporal context. It is unclear how the brain temporally segments tasks and the extent to which
each task is solved independently (126). Third, the representation of state is critical for OFC, but
how state is constructed and used is largely unknown, though there are novel theories, with some
empirical support, regarding how large state spaces could be modularized to make planning and
policy encoding efficient (75). Fourth, even given a cost function or goal state specification, fully
solving OFC in a reasonable time for a complex system such as a human body is intractable. The
brain must use approximations to the optimal solution that are still unknown, although a variety
of probabilistic machine learning methods (141) may provide inspiration for such investigations.
Finally, the neural basis of both OFC and internal models is still in its infancy. However, the
elaboration of OFC within the brain will take advantage of new techniques for dissecting neural
circuitry (such as optogenetics), which have already delivered new insights into the neural basis of
feedback-based sensorimotor control (142, 143).

Although many aspects of the computations underpinning processes such as sensory reafference
cancellation and state estimation are well understood, the motor planning process remains poorly
understood at a computational level. Some behavioral signatures and neural correlates of the
computational principles by which plans are formed have been identified, but this has occurred
primarily in tasks containing relatively small state and action spaces, such as sequential decision-
making and spatial navigation. By contrast, the processes by which biological control solutions
spanning large and continuous state spaces are constructed remain relatively unexplored. Future
investigations may need to embed rich dynamical interactions between object dynamics and task
goals in novel and complex movements. Such task manipulations may generate new insights into
motor planning since the planning process may then depend on significant cognitive input, and
so may reveal a more integrative form of planning across the sensorimotor hierarchy.
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SUMMARY POINTS

1. Optimal feedback control and Bayesian estimation are rational principles for understand-
ing human sensorimotor processing.

2. Internal models are necessary to facilitate dexterous control.

3. Forward models can assist in sensory filtering, state estimation, and planning.

4. Efficient internal models can mitigate the curse of dimensionality in sensorimotor
control.

FUTURE ISSUES

1. Given a motor task, how are a state representation and cost function constructed?

2. What are the neural algorithms by which the solution to optimal feedback control is
approximated?

3. How are internal models structured?

4. Are similar circuit mechanisms implemented across different prediction timescales?
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