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Motor learning can be defined as changing performance so as to
optimize some function of the task, such as accuracy. The measure
of accuracy that is optimized is called a loss function and specifies
how the CNS rates the relative success or cost of a particular
movement outcome. Models of pointing in sensorimotor control
and learning usually assume a quadratic loss function in which the
mean squared error is minimized. Here we develop a technique for
measuring the loss associated with errors. Subjects were required
to perform a task while we experimentally controlled the skewness
of the distribution of errors they experienced. Based on the change
in the subjects’ average performance, we infer the loss function.
We show that people use a loss function in which the cost increases
approximately quadratically with error for small errors and signif-
icantly less than quadratically for large errors. The system is thus
robust to outliers. This suggests that models of sensorimotor
control and learning that have assumed minimizing squared
error are a good approximation but tend to penalize large errors
excessively.

The concept of a loss function that measures the success or
cost of an outcome of a motor action is central to many

theories of sensorimotor control. For goal directed movements,
such a loss function, ! " f(error) defines the relative merits, for
example, of a 1-cm error compared with a 2-cm error. Once a loss
function is defined, it can be used to determine the overall loss
(the sum of individual losses) for a series of movements. A loss
function thus specifies whether it is better to perform a series of
movements in which the errors can have one of two possible
distributions, for example, always 2 cm or alternating between 1
and 3 cm. If the loss function is quadratic in error, ! # !error!2,
then the first distribution of errors is more desirable (average
loss " 4 vs. 5). However, if the loss is linear in error,! # !error!,
then both are equally good (2 vs. 2). But if the loss function is
proportional to the square root of the error, ! # !error!0.5, then
the alternating strategy is better (1.41 vs. 1.36).

Loss functions have been assumed to be quadratic in the error
in almost all the models of sensorimotor control that consider
them. Such models are often motivated by problems in engi-
neering, such as linear quadratic regulators and Kalman filters
(1), which are prominent because of their mathematical tracta-
bility. Examples come from models of reaching (2–5), posture
(6), and eye movements (3). In the statistical literature, there is
a large area of research exploring which loss functions are best
to use when modeling real-world data. In many cases, it has been
shown that it is beneficial to have fitting procedures that are
resistant to outliers. This notion has given rise to the idea of
robust fitting procedures that use loss functions that are not as
sensitive to outliers as are quadratic functions (e.g., see ref. 7).
Although the loss function is central to many theories of
sensorimotor control, it has not been empirically measured.

Knowledge of the loss function can allow us to predict what
constitutes the behavior that on average minimizes the loss
(known as optimal behavior). In general, loss functions used by
the CNS can be expected to increase with the error (the bigger
the error, the bigger the loss) and be symmetric; that is, the loss
is independent of the sign of the error. For linear systems with
Gaussian noise, all such loss functions lead to the same optimal
behavior in which movement should be unbiased (that is, on
average on target). Therefore, examination of such movement

provides little information about the loss function. However the
human musculoskeletal system is a highly nonlinear system (8),
leading to non-Gaussian statistics of errors, and, in this case, the
loss function could have a profound effect on the optimal
behavior.

We have developed a technique that allows us to directly
measure the loss function. Although economists have measured
loss (or utility) functions for a long time (9, 10), these methods
have not yet been applied to sensorimotor control. To measure
the loss function, we made the distribution of perceived errors
asymmetric or skewed. Under such a skewed distribution, dif-
ferent loss functions predict specific changes in average behav-
ior. We effectively gave people the choice of either making many
small errors with the occasional very large error, or to make a
large number of intermediate errors. The choice subjects made
can be used to estimate the loss function.

Methods
Four male and four female naı̈ve subjects participated in this
study after giving informed consent. A projection"mirror system
prevented direct view of their arm and allowed us to generate
virtual images, displayed in the horizontal plane of the move-
ment (for details of the set-up, see ref. 11). Subjects were
required to aim a virtual pea-shooter at a target line 15 cm distal
to their hand. To start a trial, subjects were required to move
their finger into a starting sphere of radius 1 cm that was aligned
with the horizontal position of the target. The translation of the
pea-shooter was then controlled by the translation of the sub-
ject’s index finger, which was measured online by using an
Optotrak 3020 motion analysis system (NDI, Waterloo, ON,
Canada).

Each trial lasted 6 seconds, during which white dots appeared
that represented the location where the peas passed the target.
Each pea was presented for 50 ms and a new one appeared every
100 ms. The location of each pea, x, was drawn from a probability
distribution p! (x,m) that depended on the mean, m, and a single
parameter ! that determined the skewness of the distribution:

p!$x, m% " $1 # !%N$m&0.2, 0.2#2%

$ !N$m # 0.2 $ 0.2"!, 0.2$1 $ $1"! # 1%2%0.5%,

where N(%, &) is a Gaussian centered at % with the standard
deviation &. The way this distribution is constructed is depicted
in Fig. 1A. The value of ! and, therefore, the shape of the
distribution was fixed during each trial. However, movement of
the hand determined the mean of the distribution (m) and,
therefore, caused the entire distribution to be translated (Fig.
1B). The mean was related to the location of the hand by m "
0.4xhand ' xoffset, where xhand is the location of the hand relative
to the target and xoffset is drawn each trial from a zero-mean
Gaussian distribution with a 1-cm SD. The gain factor of 0.4 was
chosen to allow precise placement of the mean, independent of
any motor noise. The offset was used to minimize effects of
previous trials on the current trial. In 50% of the trials, the
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distribution was inverted to avoid biases subjects might have with
respect to pointing left or right: p(!(x) " p!(&x).

Subjects were requested to move their finger so that the peas
were ‘‘on average as close to the target as possible’’. After an
initial training period to familiarize the subjects with the exper-
iment, each subject performed 1,000 trials. On each trial, ! was
chosen from a uniform distribution between 0.1 and 0.8. We
analyzed subjects’ behaviors by averaging their chosen value of
m in bins of 0.05 in !. Each bin contained ) 70 points, and we only
analyzed the median in each bin (a robust fitting technique) to
avoid the effect of outliers on our results.

To asses the combined sensorimotor noise inherent in this
task, four additional subjects performed 50 trials of a control
experiment in which the peas appeared on the screen without any
noise (so that the distribution was a delta function).

Possible Loss Functions. A number of different loss functions can
be hypothesized to explain the performance of the subjects.
Here, we only consider loss functions that are both symmetric
and monotonically increasing functions of error (Fig. 1C). We
first consider a strategy in which the loss function punishes all
nonzero errors equally (Fig. 1C, hits). For this loss, subjects
should maximize the number of direct hits by aligning the mode,
the highest point of the distribution, with the target. Fig. 1D
shows some of the distributions used in the experiment together
with the point on the distribution that should be aligned with the
target for optimal performance (icons correspond to the losses
in Fig. 1C, absolute error). Alternatively, we can consider loss
functions in which the errors are differentially penalized over the
range. For example, we can consider a loss that penalizes the
absolute error, ! # !error! (Fig. 1C). For arbitrary distributions,
it can be shown analytically that the optimal strategy is to align
the median of the distribution with the target. For the distribu-

tions used in the experiment, the median lies between the mean
and the mode of the distributions (Fig. 1D). Alternatively, the
loss could penalize the squared error ! # !error!2, the standard
loss assumed in most studies. In this case, large errors are
penalized disproportionately to small errors. For arbitrary dis-
tributions, it can be analytically shown that the optimal strategy
is to align the mean of the distribution with the target (Fig. 1D).
Finally, we can consider a loss that is similar to squared error but
is robust to large errors. An example of such as loss is the
inverted Gaussian ! # &exp(&error2"2&2), which saturates for
large errors (Fig. 1C lower). This loss function rises slower than
a quadratic and is often used in robust fitting procedures. The
optimal strategy for this robust function can be found numeri-
cally (Fig. 1D). Therefore, depending on the skewness of the
peas’ distributions, these loss functions make different predic-
tions of how subjects should place the mean of the distribution
(m) relative to the target.

Analysis. To estimate the subject’s loss function, we examined the
three fixed models above (hits, absolute error, and squared
error) as well as two parametric models, that is (1) a power
function of error ! # !error!' and (2) an inverse Gaussian loss
of the form ! # &exp(&error2"2&2). For a given value of ' or
& we can predict how the optimal mean, m, should vary with the
asymmetry parameter, !. This value is found by finding the value
of m that minimizes the expected loss. For example, for the
power model we minimized

*!+"*!error!'+ " $
&,

,

p!(x, m)!x!'dx

by using fminsearch in MATLAB (Mathworks, Natick, MA). For
each subject, we found the value of ' or & that led to the closest
fit to the binned data.

In addition, we also generated a nonparametric estimate of the
loss function for each subject. We optimized a loss function so
that it explained the data well and at the same time was smooth.
For this purpose, we minimized the following functional:

F$!% " %
i"1

14

$mi # m̂i$!%%2 $ S%&d3!

dx3 '2

,

where ! is the loss function being fitted, represented by a
symmetrical piecewise linear function defined by 12 points
between 0 and 3 (and the same points between 0 and &3), S is
a parameter that regulates the tradeoff between smoothness of
the loss function and fitting error, mi is the subject’s chosen mean
for the ith bin of ! and m̂i(!) is the optimal mean given the loss
function !, d3!"dx3 is the third derivative of the loss function
given by sum(diff(!,3).∧2) in MATLAB, where ! is the 24-
dimensional vector specifying the loss function. As the predic-
tions of the loss function are invariant to both its offset and
global scaling, we constrained the loss function to be 0 at x " 0
cm and to be 1 at x " 1 cm. In numeric simulations, we used a
value of smoothing parameter S " 0.01. We found the inferred
loss function to be relatively insensitive to the precise value of S.
For example, increasing or decreasing S by a factor of 10 changed
the inferred value of the loss function for an error of 2 cm by
'10% and &15%, respectively. To find the best fit, we used a
stochastic optimization method, which yielded a nonparameteric
estimate of the loss function for each subject.

Results
Subjects found the task simple to perform. For the control
subjects’ trials, in which the peas had no noise associated with
them, the SD across 50 trials was 0.25 - 0.02 mm, showing that

Fig. 1. Experimental paradigm and theoretical predictions. (A) The distri-
bution of the peas is constructed as a mixture of two Gaussians; the asymmetry
is determined by a parameter !. (B) The experimental setup is shown. (C)
Possible loss functions. (D) The resulting distributions are shown for various !
along with the predictions of the optimal behavior under the four models
shown in C.
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the combined motor and visual noise are very small in this
experiment.

For the experimental subjects, we varied the asymmetry of the
distributions of the peas. Subjects regulated the mean of the
distribution to obtain a distribution of pea positions that was on
average as close to the target as possible. For a representative
subject (Fig. 2A) the mean m showed a systematic variation with
the skewness parameter !. A strategy that minimizes the mean
squared error, ! # !error!2, would always place the mean on
target (m " 0) independent of ! (Fig. 2 A, horizontal line). A
strategy that minimizes the absolute error, ! # !error!, aligns the
median with the target (Fig. 2 A, dashed line). A strategy that
maximizes the number of hits aligns the mode with the target
(Fig. 2 A, dotted line). The data show that this subject on average
chose a mean that moves leftwards with decreasing ! but with a
more gradual slope than the one predicted by the absolute error.

This behavior is in between that expected for a mean squared
error loss and that expected for mean absolute error loss.

We fit two different models to the subjects’ data. We first fit
' for loss function of the form ! # !error!'. The red line in Fig.
2A shows this optimal fit for this subject, which corresponds to
a value ' " 1.69. The blue line shows the fit to the inverse
Gaussian loss function, ! # &exp(&error2"2&2), which for this
subject resulted in & " 1.70 cm.

Across the eight subjects there was also a systematic variation
(Fig. 2B) of the chosen mean as the skewness parameter varied.
This variation is also seen when only the noninverted trials are
analyzed (Fig. 2B, green line). Fig. 2B shows the fits resulting
from fitting the two loss functions for each of the subjects. For
the power function of error, the population exhibited an ' of
1.72 - 0.03 (mean - SEM), which is significantly different from
2 (P . 0.0001), and for the inverse Gaussian loss a & of 2.03 -
0.08 cm (mean - SEM). Although the fit of the latter function
is qualitatively somewhat better, we cannot statistically distin-
guish between them. However, for the fitted values, both of these
loss functions punish large errors less than the quadratic func-
tion. Punishing large errors less means that the response is less
influenced by the occasional outlier.

When fitting the above loss functions we have assumed a
particular form of the loss function. There is a different approach
that can be used to infer the loss function. Instead of fitting a
specific loss function to the data, we can use a nonparametric
approach in which we try to infer a smooth function that fits the
data well. We fit such a function to all of our subjects (see
Methods). Fig. 2C shows the inferred loss function for the set of
all of our subjects along with a quadratic function. All of the
inferred loss functions increase less than quadratically with error.

Discussion
We have measured the loss function used by subjects when
aiming at a spatial target. We found that altering the skewness
of the distribution of errors, without altering the average error,
systematically influenced the subjects’ targeting behaviors. The
behavior was inconsistent with minimizing either the absolute
error or the mean squared error. Fitting two parametric models
of the loss function as well as performing a nonparametric fit
showed that the loss function punishes large errors less than
predicted by a quadratic loss function. For small errors, however,
the function is very well approximated by a quadratic function.
This finding suggests that models of sensorimotor control and
learning that have assumed minimizing squared errors are a
good approximation but tend to overly penalize large errors.

Although we can be sure from our data that the loss function
is significantly less than quadratic for large errors, it is hard to
distinguish between models, such as robust polynomial and
inverted Gaussian. The difficulty in distinguishing between these
models arises from the models being similar for large errors and
from the relative infrequency of large errors in the experiment.
However, the key feature of robust estimators is that the loss is
subquadratic for large errors systems (7).

A number of other studies have addressed related issues.
Scheidt and coworkers (12) used probabilistic stimuli and
showed that subjects adapt to the average perturbation. How-
ever, they did not systematically analyze skewed distributions
and could not address the issue of loss functions. Because their
experiment furthermore involved significant forces, the loss
function should be expected to be a mixture between force-
dependent and precision-dependent terms. Trommershäuser
and coworkers (5) used externally defined loss functions (defined
by monetary rewards) to show that people can use decision
theory to perform optimally for such an externally defined loss.
Our study goes beyond the idea of imposing a loss function but
assumes that people are able to optimize an inherent loss
function and that we can systematically measure this function.

Fig. 2. Results. (A) For a single subject, the value of m, where the subject
placed the means of the distribution relative to the target, is shown as a
function of ! (thick black line with SEM). The different lines show the optimal
behavior under the four models shown in Fig. 1C (icons as in Fig. 1) and the
optimal fit for the power function model (red line). (B) The average mean, m,
for all subjects together with the model fits. Error bars indicate SEM across
subjects. The green lines show the data only for noninverted trials. (C) The
nonparametric fit (SEM across subjects) is shown together with a quadratic loss
function. The fitted functions are normalized so that the losses at 0 and 1 cm
are identical for each subject.
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Our visual system provides us with the error estimate. Various
studies have shown that the system uses prior knowledge, for
example, about the symmetry of configurations when memoriz-
ing visual stimuli (e.g., ref. 13). Could our results be influenced
by a prior expectation of errors playing into a Bayesian process?
Such a Bayesian integration process is unlikely to account for the
measured effects based on two lines of reasoning. First, it may
well be that because sensory and motor noise tend to be
corrupted by Gaussian processes that subjects come to the
experiment with a Gaussian prior over errors. As we have shown
recently (14), such a Gaussian prior together with uncertainty in
sensory feedback leads to a Bayes optimal estimate that shifts the
percept toward the mean of the prior. The amount of this shift
is proportional to the distance from the mean of the prior. The
net effect is that all perceived errors are simply scaled by an
unknown constant, k. All of the model classes we have examined
in the current study are invariant under such a scaling; for
example, the optimal behavior arising from minimizing !error!'
is identical to minimizing !k!error!' " k'!error!'. Therefore, the fit
to the data and the quality of fit is unaltered. Second, although
we feel a Gaussian prior is the most likely based on previous
studies, we performed a control experiment to assess the com-
bined sensory and motor variability. We found that, in this case,
subjects were very precise, with a SD of 0.25 mm in visual space,
showing that, in this task, both their visual and motor systems are
very precise. The width of the distributions used is, therefore,
large compared with the width of the uncertainty, and Bayesian
processing is unlikely to have a significant influence.

Loss functions are central to computational theories of sen-
sorimotor control. Theories of optimal control (3) and of optimal
Bayesian decisions (14), as well as those approaches that rely on
reinforcement learning (15), all depend on the choice of a loss
function. The current implementations of these theories use the
mean squared error as the loss function, such that doubling an
error quadruples the cost. In this paper, we have provided
evidence for a loss function that is close to such a quadratic error
function that had been hypothesized on theoretical grounds.

However, the loss deviates from a quadratic such that outliers are
not penalized excessively. Such insensitivity to outliers is the
defining feature or robust fitting procedures and has been shown
to be useful in many real-world systems (7). Deviating from a
quadratic function might thus be of ethological advantage.
However, because the measured loss functions are relatively
close to quadratic, the theoretical predictions of the present
models that assume that people minimize the mean squared
error are good approximations to the human loss function as long
as the movements are such that no strong nonlinear properties
of the underlying motor plant skew the resulting distributions

Previous studies have examined how an error on one move-
ment affects errors on subsequent movements (16, 17). In our
experiment, it could be that, if the peas’ distributions changed
over time, more recent peas would be more important in
determining behavior than earlier peas. However, given that,
within each trial the distribution was fixed, the order of peas will
on average not influence our results. It is an open question over
what time period the distribution is sensed and optimized.

In this study, we have analyzed how the human loss function
depends on the errors made. However, in general, the loss
function will also depend on the task demands. When holding a
cup, for example, the loss as a function of grip force may have
an abrupt transition at the point when the grip force becomes too
small and the cup slips from the grasp. For the type of task
analyzed in this study, the loss function seems to be highly
conserved over subjects, and we expect it to generalize to various
kinds of pointing tasks. In general, the loss function for different
tasks will depend on many other factors, such as smoothness,
energy, or time (18–20). By using techniques related to the one
we have described, it should be possible to measure quantita-
tively how the loss depends on such parameters.
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