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Abstract In primates, it is well known that there is a con-
sistent relationship between the duration, peak velocity and
amplitude of saccadic eye movements, known as the ‘main
sequence’. The reason why such a stereotyped relationship
evolved is unknown. We propose that a fundamental con-
straint on the deployment of foveal vision lies in the motor
system that is perturbed by signal-dependent noise (propor-
tional noise) on the motor command. This noise imposes a
compromise between the speed and accuracy of an eye move-
ment. We propose that saccade trajectories have evolved to
optimize a trade-off between the accuracy and duration of the
movement. Taking a semi-analytical approach we use Pon-
tryagin’s minimum principle to show that there is an optimal
trajectory for a given amplitude and duration; and that there is
an optimal duration for a given amplitude. It follows that the
peak velocity is also fixed for a given amplitude. These pre-
dictions are in good agreement with observed saccade trajec-
tories and the main sequence. Moreover, this model predicts
a small saccadic dead-zone in which it is better to stay eccen-
tric of target than make a saccade onto target. We conclude
that the main sequence has evolved as a strategy to optimize
the trade-off between accuracy and speed.

1 Introduction

The ability to see an object well depends on the density of
retinal photoreceptors and retinal ganglion cells deployed to
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transduce the retinal image. The evolution of the foveate ret-
ina raised maximum visual acuity enormously compared to
a spatially homogeneous retina with the same total number
of receptors. A price to pay for this non-uniformity is that
the fovea must be constantly redirected at different visual tar-
gets. In primates this is usually accomplished by fast saccadic
eye movements. The high speed of saccades precludes visual
feedback, yet saccades have remarkably stereotyped trajecto-
ries (Bahill et al. 1975; Collewijn et al. 1988; Harwood et al.
1999). The peak velocity and the duration increase system-
atically with the amplitude of the movement, and these rela-
tionships have been called the ‘main sequence’ (Bahill et al.
1975). Here we investigate the origins of the main sequence.

There are two complementary ways in which saccadic
behavior can be modeled. First, there are models which sim-
ulate the neural mechanisms that generate observed behav-
ior. By modeling neural systems such as superior colliculus
these models aim to explain sow saccades are generated (for
example, Quaia et al. 1999). These models aim to recreate the
neural mechanisms necessary to produce saccades, abstract-
ing the important principles from the neural circuitry. Such
models are extremely important for understanding neural
processing

The second form of model attempts to simulate sacc-
adic behavior based on principles that arise either through
evolution or learning. These models ask why the behaviors
have evolved to be the way they are. This approach assumes
that stereotyped behaviors do not occur by accident but have
emerged because they are evolutionary advantageous to the
organism. The fundamental assumption is that evolution
selects for overall fitness, and that sub-classes of behavior
such as movement will also form part of fitness. Individu-
als whose movements are in some way better than others
will have more chance of passing their genes on to the next
generation. The goal of this approach is to find the physical
and neural constraints placed on the system and the mea-
sure of fitness (or its inverse, cost), of a particular way of
moving. The framework used for such a model is that of
optimal control theory. In this framework, a cost is assigned
to each possible way of moving and, based on this cost, the
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theoretically optimal movement is found and compared to
empirical observations. The idea is to find the biologically
relevant costs and constraints by predicting observed behav-
iors as optimal. These models do not show how the behavior
is neurally instantiated, although they may inform why cer-
tain functions are found.

Optimal control models have had a powerful influence
on the field of skeletomotor control and have been success-
fully used to model arm movements (Flash and Hogan 1985;
Harris and Wolpert 1998; Hogan 1984; Nelson 1983; Todorov
and Jordan 2002; Uno et al. 1989), walking (for a review see
Pandy 2001) and posture (Kuo 1995). We suggest that move-
ment costs have four fundamental components — time, accu-
racy, stability and energy — with the relative weighting of the
components depending on both the task and the body system
under control. Movements such as walking have been accu-
rately modeled by assuming that we choose to move so as
to reduce energy consumption (e.g. Pandy 2001) Arm move-
ments have been modeled by assuming that movements are
chosen to be accurate, or to achieve the task at hand, in the
presence of motor output noise (Hamilton and Wolpert 2002;
Harris and Wolpert 1998; van Beers et al. 2002, 2004). Some
models have suggested that movements are made to be as
fast as possible, putting a cost on time (Enderle and Wolfe
1987; Happee 1992). Recently it has been shown that subjects
can control the stiffness, that is stability to external pertur-
bations, of their arm to optimally match task requirements
(Burdet et al. 2001). In general there is a tension between
these four types of cost. For example, it is possible to be fast
but not accurate leading to the speed-accuracy trade-off. In
general any task can be thought of as a weighted combination
of these four types of cost.

In the eye movement literature, the notion of overall cost
for eye movement has been less extensively explored. Early
studies attempted to model saccade trajectories as minimum
time using bang-bang optimal control time (Clark and Stark
1975; Enderle and Wolfe 1987). More recently we have shown
that trajectories are better modeled as minimum variance pro-
files (Harris and Wolpert 1998; Harwood et al. 1999). How-
ever, to our knowledge, there has been no attempt to explain
the main sequence as an optimal strategy. That is, why does
a saccade of a given amplitude have a stereotyped duration
and peak velocity? In this paper, we propose that both sacc-
adic trajectory shapes and the main sequence have evolved
to optimize visibility in the presence of motor noise, specifi-
cally optimizing the trade-off between the duration of the eye
movement and end-point variability of the saccade. Unlike
arm or leg movements, we assume that energy costs are not
a significant factor (saccades are remarkably resistant to fa-
tigue, Fuchs and Binder 1983), nor do we consider instability
an issue, as the oculomotor plant is highly overdamped. We
suggest that the neural circuitry of saccade has evolved to
optimize the trade-off between duration and accuracy.

Due to the extrafoveal fall-off in photoreceptor density,
visibility of a visual target decreases rapidly with foveal
eccentricity as small as a few minutes of arc, as measured by
contrast sensitivity or letter acuity (Herse and Bedell 1989;

Ludvigh 1941). Thus, position error decreases visibility. Visi-
bility of an object also decreases when its image moves across
the retina (retinal slip). The contrast sensitivity of a moving
image is a complex function of the spatial frequency content
of the image (Burr and Ross 1982) and the exposure time
(Morgan et al. 1983), but when retinal slip exceeds a few de-
grees per second, contrast of small objects decreases rapidly
(Burr and Ross 1982; Westheimer and McKee 1975), and lit-
tle if any useful information at high spatial frequencies can be
gathered. We propose that such poor vision is an evolutionary
cost.

Now consider a small stationary visual target imaged on
the peripheral retina. How should the eye move to minimize
the visual cost associated with this target? In principle, the
optimal strategy would be to move the eye instantaneously
to eliminate positional error. In addition to the limits on such
motion placed by the non-zero response time of extraocular
muscles, we have proposed that an additional constraint is
imposed by proportional noise (PN) perturbing the aggre-
gate neural command (Harris and Wolpert 1998). With PN,
the standard deviation of the noise is proportional to the ab-
solute of the mean level of the signal. Moving more quickly
requires larger command signals, which induce greater noise,
and hence lead to an increased endpoint variance. Whereas,
moving slowly may decrease errors, it does so at the price
of spending more time with poor vision. Thus, movement
time and positional error are in conflict, and there is a speed
accuracy trade-off. We propose that the cost of losing vision
during the movement added to the error over the subsequent
fixation period, is optimized and this leads to both a unique
optimal trajectory and duration of movement for each possi-
ble amplitude.

2 Methods

The problem is to find the optimal trajectory that minimizes
the total cost associated with moving the eye to a target
imaged on the retina at a specified foveal eccentricity. By
making some simplifying assumptions, we solve this semi-
analytically using Pontryagin’s minimum principle (Bryson
and Ho 1975).

We approximate the total cost of an eye movement inte-
grated over the movement as being composed of two com-
ponents. First, there is the cost associated with retinal slip, or
movement cost. Here we assume that cost is all or nothing,
so that once the saccade has begun and vision is lost the cost
is a constant « per unit time until the saccade ends. After
the movement ends there is a second cost per unit time asso-
ciated with positional error over the post-movement period,
F, which we call the fixation cost. We assume that in the
vicinity of the fovea the cost is a quadratic function of eccen-
tricity given by Be(r)?, where e(r) is the foveal eccentricity
of the target at time ¢ and B is a constant. It is well known that
psychophysical threshold measures of acuity fall off approxi-
mately linearly with foveal eccentricity, and strictly speaking
there should be a discontinuity at the foveola. However, we
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would expect a small object to yield a smooth threshold sen-
sitivity around the fovea as it will be integrated by a region
of foveal ganglion cell receptive fields. Thus the assumption
of a quadratic minimum in the vicinity of the fovea seems
reasonable.

In visual scanning the fixation period is highly variable,
but here we assume a mean value of F = 300ms and that
the fixation error is not corrected by a secondary movement
before a movement to the next visual target is made (see
Sect. 4). For a movement of duration 7, the total integrated
cost is therefore:

T T+F
Cost = /adt + / Be(r)? dt (1)
0 T
—— N———
Movement cost Fixation cost

where o and B are positive constants reflecting the relative
importance of speed and accuracy. The values of these con-
stants are assumed to be unknown and may ultimately reflect
evolutionary penalties for the organism (see Sect. 4).

We now consider the mathematical problem of optimiz-
ing saccades to a target of fixed eccentricity A. We consider
that two stochastic processes play into the generation of sac-
cades. First, we assume that the aggregate neural command,
u(t), is perturbed by PN, which is a zero-mean additive white
noise process with instantaneous standard deviation propor-
tional to the mean,
ou(t) = klu(1)] 2
where k is the coefficient of variation of the SDN. Second,
we assume that the desired amplitude of the saccade, P, need
not be the target eccentricity and that P can vary from move-
ment to movement for a fixed A. This is included for the
sake of generality to take into account the possibility that the
gain, g = P/A, may also be a stochastic process with the
possibility of a non-unity mean, g (such as undershoot bias)
and non-zero variance, ogz, (such as localization error which
could vary from trial to trial).

We denote the eye position at time ¢ for a movement made
of desired amplitude P, as xp (¢). It follows from the linear-
ity of PN in a linear system that xp(t) = g x4(¢) where we
consider the gain g as a random variable. Therefore, over
repeated saccades of the same target eccentricity and dura-
tion, the expected value of the cost given in (1)

J = E{Cost}
T+F

:oeT+ﬁ/ (A — gA)? + Var{g xa(r)}dt (3)
T

where we have decomposed the average squared error in the
fixation cost, E{e(r)?}, into its two components, the
(expected bias)? and variance. We assume that the noise pro-
cess in g and the PN are independent and therefore expanding
Var{g x4 (¢)} gives

23
T+F
J=oT +p / (A—=gA? +0;A% + (3° +0))
T
x Var{x (t)}dt 4)
T+F
&)

=aT+ﬂ’/ o2(t)dr +y
T

where oxz(t) is the variance of the eye position in the fixation
period, 8’ = (8% +o02)B and y = FB[(A — gA)? + 07 A%].
With PN during the movement, the variance in the fixation
period depends on the movement duration 7, the precise tra-
jectory of the saccade, the dynamics of the extraocular mus-
cles (ocular plant), and the coefficient of variability of the
noise k. The key point is that with PN the two components in
Eq. (5) cannot be minimized independently because reduc-
ing movement duration, 7, reduces the first component but
increases the second. We propose that the saccadic trajectory
profile and movement duration, are both selected to minimize
the expected cost in Eq. (5).

To solve this optimization problem for a given move-
ment amplitude, we first hold the duration T fixed and find
the optimal trajectory. With T fixed the optimal trajectory is
the one that minimizes the fixation cost of Eq. (5). We have
previously shown numerically the trajectory that minimizes
this cost (Harris and Wolpert 1998). Here we show that for
a linear plant, the optimal trajectory and its variance can be
derived analytically. We then vary the movement duration 7,
and for each 7 we find the optimal trajectory and compute the
fixation cost, that is the integrated variance over the fixation
period. For each amplitude, the optimal saccade duration is
found that minimizes the overall cost.

We denote eye position as x (#) which is the output of a lin-
ear pole-only ocular motor plant, with impulse response p(?),
whose input is a single scalar aggregate mean neural com-
mand u(¢). To represent proportional noise on the motor com-
mand we assume the motor command is corrupted by zero-
mean white noise with an instantaneous standard deviation
proportional to the absolute motor command oy, () = k|u(?)],
where k is the constant coefficient of variation. The average
trajectory is then given by

t

Elx(@)] = /u(r)p(t—r)dt
0
and from basic analysis, it follows that the variance of the
eye position is given by the new convolution (Harris 1998)
!

o2(t) = Var[x(r)] = /Var[u(t)p(t—t)]dr

0
t

= / Var[u(t)]pz(t—r)dr

0
t

= /k2u2(r)p2(r—z)dr

0

(6)

(7
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From Eq. (5) the expected cost of movement is
T+F

J=y+aT +p / o2 (t)dt
T

T+F t

=y+al +p / /kzuz(r)pz(t—r)d'c dt (8)
T 0

We can rewrite this to split the cost due to the noise dur-
ing the saccade (0 <t < T') and that due to the noise in the
fixation period (T <t < T + F),

T+F T
J=y+aTl + pk> / /uz(r)pz(t—r)d'c
T 0

t

+ / () p*t—t)dr | dr - (9)
T
As we assume that after time 7 (the saccade duration) average
eye position is at gA during the fixation period of duration F,
the last component of J is the same for all possible trajectories
and can be replaced by the constant «:

T
J=y+aT + ﬂ’kz/uz(r)qr(r)dt +k (10)
0
where g7 (1) = TT+F pz(t —1)dr.

We solve this optimal control problem for an order n state
space model of the eye plant

X(t) = AX(t) + Bu(t). (11)

From Pontryagin’s minimum principle the optimal control
signal is given by minimizing the Hamiltonian with respect
to u:

H(x,u,1) = a+ g'k*u*(t)qr (1)
+AT(O[AX(t) + Bu(r)] (12)

where A is the costate vector given by the solution of the
costate equation:

. oH
—A(t) [ —

™ 13)
Since J is independent of the state x, the costate equation
will be a homogeneous differential equation of order n, with
asolution of n exponentials and hence will be continuous over
(0, T). Minimizing H with respect to u, requires solving

oH

o =28kK*uqr + ATB =0 (14)
u
The optimal control is therefore given by:
n
t
u*(t)zzm O<t<T) (15)

qr (1)

where the y;, are the n roots of the costate equation. For an
overdamped ocular plant with distinct real roots, y, = +1/t,

r=I1

where ¢, are the time constants of the plant. There are no con-
straints on u(¢), and in general there will be discontinuities
inuatt = 0,and ¢t = T. The scalars ¢, are determined by the
boundary conditions on the state variables. We require that
time derivatives up to order n — 1 of eye position at T are
Zero:

dix

T .
d' p(T—t
o :0:/u(t) PID G et n—1 (16)
T

dp!

0

The remaining degree of freedom is given by the amplitude,
P, of the movement

t

x(T)=P = /u(t)p(T — t)dr.

0

a7

This provides n simultaneous equations to solve for the
c,. Although it is possible to find explicit expressions for the
¢, they are extremely cumbersome. Instead, we have solved
them numerically. For simulations we have used a third-order
linear model (n = 3) of the oculomotor plant with time con-
stants 223, 14 and 4 ms (Harwood et al. 1999).

From Eq. (10) the optimal trajectory is independent of
any constants added or subtracted from the cost J, and also
independent of any multiplicative scale factor applied to J.
Thus, the optimal trajectories will be independent of y, «,and
will depend only on the ratio «/(8k?). Thus the weighting
factors and the coefficient of variation of the noise collapse
into one unknown.

3 Results

This fixation cost arising from SDN on the motor command
with a coefficient of variability (k) of 0.7% is plotted against
duration 7 for a unit amplitude saccade in Fig. 1a. This shows
that the fixation cost at the end of the optimal movement
is a rapidly decreasing function of the movement duration,
reflecting a strong speed accuracy trade-off. Similar curves
can be obtained for saccades of amplitude other than unity,
because with PN the standard deviation scales linearly with
amplitude. Figure 1b shows the two components of the cost
and the combined total cost for a 10 degree movement. The
dotted line is the movement cost, which is a linearly increas-
ing function of T with a slope of «. For a given duration, 7,
this component of the cost function does not change with the
amplitude of the movement. The dashed line is the fixation
cost which depends on the amplitude. The full cost (solid line)
is given by the sum of these two components, which clearly
has a minimum that represents the optimal movement dura-
tion, in this case around 50 ms. For movements of different
amplitudes, this optimal duration increases with amplitude
(Fig. 1c) and also depends on the single parameter trade-off
ratio /(B k?).

Figure 2a (solid line) shows the optimal duration as a
function of amplitude for a/ (B8’ k%) = 26, 500 (for example,
a/B’ = 1.3 and k = 0.007). This is a compressive function



Optimal control of saccades

25

a) 100 c

—
o:

—_
o,
N

Fixation cost (degz)

10° = !
10 10
Duration (ms)

10

b) 0.35¢
03}

0.25¢

Cost

o

=)

&
‘

0 50 10
Duration (ms)

c
)101-

10" ¢

Cost

107

107 ‘ :

10 10 10
Duration (ms)

3

Fig. 1 a The fixation cost (see Eq. (1)) of making a unit amplitude sac-
cade as a function of movement duration, 7, plotted on a log—log scale
(F = 300ms). Note that cost decreases for longer duration for a given
amplitude. b A linear—linear plot of the total cost of a 10 degree saccade
as a function of duration, 7. The total cost (solid line) is made up of two
components (see Eq. (1)): the movement cost which increases linearly
with duration (dotted line) and the fixation cost which decreases with
duration, as in (a) (dashed line). The optimum cost is the minimum total
cost, shown by the circle. ¢ The total cost for movements of different
amplitudes (5°, 10°, 20° and 30°) shows an increase in optimal dura-
tion (circles) with amplitude, as seen empirically in the duration main
sequence

for very brief movements but becomes linear for longer move-
ments, and is very similar to the empirically observed main
sequence for duration (Fig. 2a, dots). Once the duration and
amplitude are specified, the trajectory is fixed and therefore
the peak velocity is determined (Harris and Wolpert 1998).
Figure 2b shows a good fit for the main sequence for peak
velocity as well. It must be emphasized that the compressive
nature of the peak velocity function is not the result of any
saturation in the control signal but arises from optimizing
Eq. (5). It is also an empirical observation that the prod-
uct of peak velocity and duration is proportional to ampli-
tude, reflecting a constant ratio of peak to average velocity
(Becker 1989). The model clearly captures this phenome-
non as well (Fig. 2¢). The optimal speed profiles for 5, 10
and 20 degree saccades from the optimal model with PN are
shown in Fig. 2e showing symmetric bell shape trajectories,
as previously described (Harris and Wolpert 1998)

The predicted main sequence depends on the trade-off
between the movement and fixation costs and the noise, that
is the ratio «/ (B’ k?). Increasing the ratio penalizes duration
more thus leading to shorter durations for a given amplitude,
and conversely, decreasing the ratio leads to longer durations.
For example, data published by Baloh et al. (1975) showed
modestly longer durations than typically found in our lab
(Fig. 2d). However, these data can still be well fit by the
model but with a/(8’ k%) = 12,200. This could be attrib-
uted to individual differences such as approximately halving
a or doubling B, or simply to more noise (increasing k by
40%). This also reveals that the predicted main sequence is
not very sensitive to these parameters, so that similar main
sequences across individuals would occur even with moder-
ate individual differences in trade-off parameters.

Theoretically, for a given /(8 k%), the optimal main
sequence should also depend on the fixation costin Eq. (5). To
explore this dependence we found the optimal main sequence
when mean F was varied over an extreme tenfold range from
100 to 1,000ms. As can be seen from Fig. 3, there is little
change in the optimal main sequence. Although individual
fixation durations are empirically highly variable (Buswell
1935), mean fixation duration is much less variable. Thus,
we do not expect any strong relationship between physiolog-
ical fixation durations and the main sequence.

We now consider another strategy of moving slowly to
maintain vision at all times. Here we make the simplifying
assumption that retinal slip below d°s~! affects vision min-
imally so the cost of a drifting movement is caused only by
the fixation cost and is given by

F
Cost = f8 / e(t)’dr (18)
0

where e(t) reduces at the rate of d°s~!. Provided F > A/d
the fovea will reach the target at t = A/d and the cost is
BA3/3d.If F < A/d then the target is not reached during
the fixation period and the costis B(A2F — Ad F2+d* F3/3).
It can be seen from Eq. (5) that for very small target eccen-
tricities the cost of making a saccade could exceed the cost
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Fig. 2 Comparison of theoretical optimal main sequence (solid lines) to empirical data (dots). a Duration against movement amplitude. b Peak
velocity against movement amplitude. ¢ The product of duration and peak velocity against movement amplitude. This typical main sequence
was recorded from a healthy adult using an infra-red limbus eye-tracker at 1 kHz. The data were recorded in a previous study (Harwood et al.
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Fig. 3 The optimal duration main sequence for mean fixation periods,
F =100, 200 and 1000 ms

of slowly reducing eccentricity by d° s~!. Figure 4 shows the
cost of saccading and the cost of drifting at various values of
d including no movement (d = 0) for various target eccen-
tricities. As can be seen, for very small amplitudes it does
not pay to make a saccade, but instead drift towards the tar-
get or even to maintain constant eccentric fixation. Above the
intersection point of the saccade and drift curves it is optimal
to make a fast movement. The precise location of this inter-

section point depends on the drift rate d that can be tolerated
and the expected fixation duration F. Thus, SDN predicts that
minimization of cost leads to two possible strategies depend-
ing on the target eccentricity and expected fixation duration
or target longevity.

4 Discussion

It is a remarkable fact that in spite of the myriad of visual
tasks that we carry out every day, we only make a few differ-
ent types of eye movement. When we view a stationary scene
at a fixed distance with the head still, only fixations or sac-
cades occur, there are no ‘in-between’ types of eye move-
ment. Moreover, saccades have a fixed relationship between
their amplitude and the saccadic duration and peak velocity,
known as the main sequence. We have shown that this stereo-
typicity could be an inevitable consequence of maximizing
vision given the constraints of motor noise. There are two
steps to our argument.

First, if the motor command is perturbed by PN with the
property that the standard deviation is proportional to the
mean, then variance is accumulated during the movement
leading to inaccurate fixation. For a given movement dura-
tion there is a unique trajectory that minimizes the cost of
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Fig. 4 A comparison of total costs for two strategies of movement. The
dotted line shows the cost for saccadic movements and the solid lines
show the cost for drifting movements with different tolerated drift rates
d. The intersection of each solid line with the dotted line represents the
saccadic deadzone for the given drift rate d

inaccurate fixation over the post-movement period [fixation
cost in Eq. (1)]. As previously shown (Harris and Wolpert
1998), the shape of this optimal trajectory is in good agree-
ment with empirical observation, but depends in detail on the
dynamic response of the oculomotor plant and the duration
of the post-movement period. We have chosen a third-order
linear model because this provides an excellent fit to the tra-
jectories when using the sensitive technique of Fourier analy-
sis (Harwood et al. 1999). However, the general symmetrical
bell-shaped profile for fast movements is not only insensitive
to modest variations in the precise parameters and the order
of linear plant models, but is also predicted by non-linear
models (Harris and Wolpert 1998). This first step only tells
us the optimal shape and does not tell us which duration is
optimal for a given movement amplitude.

In the second step we attribute an additional cost due to
loss of vision from image motion, which is proportional to
the duration of the movement. The total cost of a movement
is then composed of two components, the movement cost and
the fixation cost. Minimizing the total cost reveals two dis-
tinct optimal strategies depending on the target eccentricity:
(a) for very small eccentricities, it pays to drift slowly or not
move the eye at all (fixation), and to tolerate the marginally
poor vision due to imperfect foveation; and (b) for larger
eccentricities, the optimum is to move quickly with the opti-
mal saccadic trajectory, losing vision transiently during the
movement, but reaching the target rapidly. Moreover, as tar-
get eccentricity increases, the optimal movement increases in
both duration and in peak velocity in a fixed stereotyped way,
which is in good agreement with the empirically observed
main sequence (Fig. 2).

Although the empirical main sequence is stereotyped, it is
notimmutable. Saccades to acoustic (Zambarbierietal. 1982)
and tactile targets (Groh and Sparks 1996) are slower. The
main sequence also depends on the subject’s visual task such
as just looking at visual targets or actually tapping the targets
(Epelboim et al. 1997) or pointing to real or remembered tar-
gets (Smit et al. 1987). However, all these main sequences
have a similar shape and the task may determine the relative
weighting of movement and fixation cost. As can be seen
from Eq. (10), changing the single parameter «/(8’ k*) does
not alter the shape of the relationship but acts to simply scale
the shape along the amplitude axis. Thus differences in main
sequences under different conditions and between individu-
als may reflect differences in the cost weightings (« and B),
and/or the amount of SDN (k). At present we are unable to
pre-specify o and B. It is possible that they are fundamen-
tally experimentally indeterminate, depending on the precise
evolutionary niche of the organism (i.e. how much slowness
and error contribute to evolutionary fitness). However, it is
possible that @ and 8 reflect some as yet unknown under-
lying process that fixes the relationship between uncertainty
and speed. Whether an information-theoretic approach will
yield insight into this issue remains to be seen.

Our results do not depend on or assume that a saccade
is accurate on average. In particular, if a saccade is pro-
grammed to undershoot the target with subsequent correc-
tive movements, the main sequence is still optimal for each
saccade and its post-movement period. We have assumed
implicitly, however, that the cost of a saccade does not in-
clude the cost of subsequent corrective saccades. Although
corrective saccades are undoubtedly commonplace in the lab-
oratory when subjects make saccades to a single target, they
appear to be much less frequent or even absent when view-
ing natural scenes (Buswell 1935). Therefore, we argue, it
seems unlikely that the main sequence would have evolved
to include costs for correctives. However, more experimental
data are needed to corroborate this conclusion. The reason for
so many correctives in laboratory situations is unknown and
controversial. One possibility is that they are simply an arti-
fice of the laboratory, as we do not usually encounter single
targets naturally. However, we have previously argued that
the undershoot bias may also reflect a stratagem to minimize
overall saccade flight time given that saccades are inaccurate
(Harris 1995). If this is the case, then a parsimonious picture
emerges in which the main sequence optimizes individual
saccades, while adaptive gain control optimizes the overall
sequence when correctives are needed.

We have assumed that the movement cost per unit time is
constant at o throughout the saccade, which implies that there
is an abrupt step in cost when there is any retinal slip. This is a
simplification that allows us to relate cost to movement dura-
tion by the simple integral in Eq. (1). Threshold measures for
small visual targets would indicate a rapid but not step-like
rise in cost once slip exceeds some critical velocity (Burr and
Ross 1982). For small visual targets this critical velocity is
often cited as about 3°s~! (Westheimer and McKee 1975).
However the effect of slip velocity on visibility is complex.
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For single exposures of about 200 ms, contrast sensitivity is
only marginally affected for slips below 3°s~! (Westheimer
and McKee 1975), but for repeated exposure as might be
expected in visual scanning, contrast sensitivity decreases
at lower slip velocities (Morgan et al. 1983). Further com-
plications arise because the critical velocity increases with
larger visual targets (Burr and Ross 1982), and if the object
is already blurred, image motion may actually improve con-
trast (Hammett et al. 1998). Again, it is plausible that the rel-
ative values of the movement and fixation costs, and hence
the optimal main sequence, could depend on the spatial fre-
quency content of the peripheral target. A more elaborate
model of cost could also take into account how the visibility
of a moving target scales with foveal eccentricity (Chung and
Bedell 1998). Thus, relating the visibility to image motion is
very complicated. In any case, the proportion of movement
time during most saccades at these low velocities is small.

We have also examined the strategy of moving the eyes
very slowly so as to maintain visibility during the move-
ment. In this case the cost of movement increases rapidly with
foveal eccentricity of a target, while the cost of a saccade is
a compressive function (Fig. 4). Thus, there will always be
a target eccentricity above which it pays to make a saccade
and below which it pays to drift slowly or not move at all.
The precise size of this ‘deadzone’ depends on the choice
of /B’ and the level of noise, and on the fixation period F.
For longer fixation periods, the cost of eccentric fixation is
proportional to the fixation period while the cost of a sac-
cade increases sub-linearly. Therefore the saccadic deadz-
one decreases as the fixation duration increases. Although
a saccade deadzone of about 0.2° was originally proposed
(Rashbass 1961), it was subsequently shown that saccades as
small as 0.05° could be elicited by a visual target (Wyman and
Steinman 1973a,b). However, these microsaccades tended to
have latencies longer than the typical 200 ms, which appeared
to depend not on visual processing of targets at such small
eccentricities, but rather on the programming or execution
of the saccade (Wyman and Steinman 1973a). It also has
been shown that express saccades, which have a much shorter
latency, do exhibit a deadzone of about 0.5° (Weber et al.
1992). These findings suggest that the saccade deadzone may
decreases with longer latency, which is not inconsistent with
our model. Thus, the longer a stimulus is expected to be pres-
ent, the smaller the deadzone becomes until a movement is
eventually triggered.

We have proposed that the standard deviation of the neu-
romotor command noise is proportional to the mean level of
the command, giving a constant coefficient of variation. At
least for limb movements this type of noise is in accord with
data from both motoneuronal recording (Matthews 1996)
and force production studies (Schmidt et al. 1979). We have
shown that such noise arises from a combination of a renewal
process at the motoneurons and the recruitment properties
of muscles (Jones et al. 2002). It is also in general accor-
dance with known psychophysical relationships implicit in
Fitt’s law and Weber’s law. We predict that a similar noise
dependency exists in the oculomotor system, and may arise

at the single neuronal level, as an emergent property of neu-
ronal networks, or at the neuromuscular level or as a conse-
quence of motor unit recruitment. Consistent with the idea
of SDN is that the standard deviation of saccadic endpoints
increases monotonically with saccadic amplitude (van Op-
stal and van Gisbergen 1989). Recent scleral coil recordings
in humans of variability of the initial 150 ms of post-saccad-
ic fixation to targets or varying eccentricity shows that this
variability within a saccade increases with eccentricities (and
hence muscle tension) supporting the idea of SDN (van Beers
2003). Although we have focused on noise on the aggregate
neural command throughout a saccadic movement, it is pos-
sible that the noise arises from a different process such as
variability in planning or variability of muscle excitability.
For example, we can consider instead that the motor com-
mand u(¢) on any given movement is noise-free but that the
gain, g, of the motor command varies from trial to trial with
unity mean and standard deviation o,. Across an ensemble
of movements the variance of the motor aggregate command
is Var{g u(t)} = 05 u(t)?. Therefore once again we have PN
across the ensemble of movements and the mathematics fol-
lows as before. It is also possible that the dynamic response
of the muscle plant also fluctuates in time. This leads to more
complicated expressions, but essentially leads to a similar
problem (Harris 2002).

The fixed relation between amplitude and duration for
saccades is in sharp distinction to the variable relation seem
in arm movements. Some of the earliest studies of movement
examined how we select the duration of a movement. The
relationship between the movement amplitude, the accuracy
requirement of the movement (as determined by target width)
and the movement duration is described by Fitts law (Fitts
1954). This law relates the duration of a movement to the
accuracy requirement of a task, as determined by the target
width and amplitude of the movement, and has been shown to
apply for a range of task such as reaching to targets, placing
pegs in hole and picking up an object. We have previously
modeled this relation by assuming that in the presence of
PN, subjects aim for a fixed success rate, that is probability,
of getting on target given the target width and target ampli-
tude (Harris and Wolpert 1998). Why then is there only one
duration for each amplitude for saccades? One possibility
is that in saccades the fovea is equivalent to target width.
An object of interest in the visual scene needs to be placed
within the target of the fovea. Therefore the saccadic sys-
tem can be considered equivalent to the arm always point-
ing towards a fixed size target leading to a fixed amplitude-
duration relationship.

In summary, we have argued that without any neuro-
anatomical constraints other than PN, the saccadic system
may have evolved to optimize the speed-accuracy trade-off.
This model only addresses the overall goal of the saccadic
system and does not specify the neural mechanisms which
generate the saccades. We propose that saccades optimize
this trade-off at two levels. First, for any given amplitude
and duration of movement there is an optimal trajectory,
which is given by the minimum variance trajectory (Harris
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and Wolpert 1998; Harwood et al. 1999). We believe this prin-
ciple is shared by other aimed movements such as arm move-
ments. Second, there is also a fixed speed-accuracy trade-off
for saccades of different amplitudes. This leads to an optimal
relationship between duration and amplitude, which we call
the main sequence.
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