
Sensory and Motor Systems

The Sensorimotor System Can Sculpt
Behaviorally Relevant Representations for Motor
Learning

David W. Franklin,1,2 Alexandra V. Batchelor,1,3 and Daniel M. Wolpert1

DOI:http://dx.doi.org/10.1523/ENEURO.0070-16.2016
1Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Cambridge
CB2 1PZ, United Kingdom, 2Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical
University of Munich, 80992 Munich, Germany, 3Department of Physiology, Development and Neuroscience,
University of Cambridge, Cambridge CB2 3EG, United Kingdom

Abstract
The coordinate system in which humans learn novel motor skills is controversial. The representation of sensori-
motor skills has been extensively studied by examining generalization after learning perturbations specifically
designed to be ambiguous as to their coordinate system. Recent studies have found that learning is not
represented in any simple coordinate system and can potentially be accounted for by a mixed representation.
Here, instead of probing generalization, which has led to conflicting results, we examine whether novel dynamics
can be learned when explicitly and unambiguously presented in particular coordinate systems. Subjects per-
formed center–out reaches to targets in the presence of a force field, while varying the orientation of their hand
(i.e., the wrist angle) across trials. Different groups of subjects experienced force fields that were explicitly
presented either in Cartesian coordinates (field independent of hand orientation), in object coordinates (field
rotated with hand orientation), or in anti-object coordinates (field rotated counter to hand orientation). Subjects
learned to represent the dynamics when presented in either Cartesian or object coordinates, learning these as well
as an ambiguous force field. However, learning was slower for the object-based dynamics and substantially
impaired for the anti-object presentation. Our results show that the motor system is able to tune its representation
to at least two natural coordinate systems but is impaired when the representation of the task does not
correspond to a behaviorally relevant coordinate system. Our results show that the motor system can sculpt its
representation through experience to match those of natural tasks.
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Significance Statement

The nature of the coordinate system in which humans learn motor skills has been highly controversial.
Despite extensive experimental work, the results are highly conflicting (e.g., intrinsic joint-based vs
Cartesian vs mixed coordinates). In our study, we show that the motor system is able to sculpt and tune its
representation to at least two natural coordinate systems. Importantly, we also show that learning is
impaired for a task of equal complexity that does not correspond to a naturalistic coordinate system. Our
results suggest that the previously conflicting findings arise primarily from the use of novel skills that are
ambiguous as to their coordinates, thereby making the experimental results highly sensitive to small
differences in the experimental design.
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Introduction
The search for the coordinate system of motor control

has been one of the holy grails of sensorimotor neurosci-
ence at both the neural level (Kakei et al., 1999; Hatso-
poulos, 2005; Aflalo and Graziano, 2007; Scott, 2008;
Kalaska, 2009; Graziano, 2011; Churchland et al., 2012)
and the behavioral level (Shadmehr and Mussa-Ivaldi,
1994; Malfait et al., 2005; Brayanov et al., 2012; Berniker
et al., 2014), often with conflicting interpretations. Many
studies have tried to identify the coordinate system in
which motor skills are encoded by examining the gener-
alization of learning. Although initial experiments sug-
gested that the representation of novel dynamics occurs
in simple intrinsic coordinates (i.e., in terms of joint
torques and joint velocities; Shadmehr and Mussa-Ivaldi,
1994; Malfait et al., 2002, 2005), recent studies have
questioned these results (Haswell et al., 2009; Brayanov
et al., 2012; Berniker et al., 2014; Parmar et al., 2015). For
example, Berniker et al. (2014) examined whether gener-
alization could be accounted for by the sensorimotor
system representing dynamics in intrinsic joint, extrinsic
Cartesian, or object-based representations. They found
that no single coordinate frame could explain the gener-
alization of dynamics and that the representation was
best accounted for by a mixture of these coordinate
systems (Parmar et al., 2015). Such a mixed representa-
tion is in accord with studies of visuomotor learning,
which has been shown to result from a mixed gain field
encoding of intrinsic and extrinsic coordinates (Brayanov
et al., 2012). Critically, all of these previous studies have
used perturbations that are designed to be ambiguous as
to the representation of the task (e.g., a skew-viscous curl
force field in a small workspace or a force field for a single
reach direction), and, therefore, these perturbations could
in theory have multiple different representations. There-
fore, the conflicting results may well reflect the partici-
pant’s personal biases as well as small differences in the
experimental conditions and perturbations.

Here we take a novel approach and, instead of probing
generalization, we examine how well novel dynamics can
be learned when the dynamics are explicitly and unam-
biguously presented in particular natural and unnatural
coordinate systems. This allows us to test whether the
motor system can learn to represent dynamics in specific
different coordinate systems. That is, previous work has
suggested that motor adaptation occurs in a mixture of
coordinate frames (Brayanov et al., 2012; Berniker et al.,
2014; Parmar et al., 2015). In particular, in the study by
Berniker et al. (2014) ambiguous dynamics were pre-
sented to subjects to determine how such learning gen-
eralizes, and the results were consistent with subjects
using a mixture of coordinate systems to learn the dynam-
ics. The authors suggested that a specific skill could be
learned by an appropriate combination of the coordinate
system for that skill. Here we compare, for the first time,
the learning of an ambiguous field and several nonam-
biguous fields. This allowed us to examine directly the
extent to which the proposed mixed representation could
be shaped to learn specific fields. By providing the dy-
namics unambiguously to the subjects, we determine
whether the subjects can learn to use a specific coordi-
nate frame, or, in other words, sculpt the particular coor-
dinate system in which the task is learned.

Subjects performed center–out reaching movements to
the same targets, but with three different hand orienta-
tions (neutral, flexed, and extended). The force field that
we generated at the hand could be independent of these
hand orientations, and therefore the experience was of an
unambiguous Cartesian force field. Alternatively, we could
vary the force field in real time with the hand orientation so
that the force field either rotated with the hand, as if the
force field was generated by a hand-held tool (natural
object-based coordinates), or rotated counter to the hand
(unnatural anti-object coordinates). Our results clearly
show that the motor system can represent dynamics
equally well in different natural coordinate systems (Car-
tesian and object), but not in an arbitrary coordinate
system (anti-object), even when matched for complexity.
This suggests that the motor system can sculpt different
natural coordinate systems that are appropriate to task
demands.

Materials and Methods
Forty naive subjects (17 male and 23 female) partici-

pated in the experiment (mean age, 25.9 ! 5.8 years),
with 10 subjects assigned randomly to each of four
groups. All subjects were right handed, according to the
Edinburgh handedness inventory (Oldfield, 1971). Sub-
jects gave informed consent, and the experiments were
approved by the local ethics committee.

Experimental setup
Subjects were seated in a chair with their shoulders

restrained by a harness. They made reaching movements
with their right arm in the horizontal plane at "10 cm
below their shoulder level, while the forearm was sup-
ported by an air sled. Subjects grasped the vertical handle
of the robotic manipulandum (vBOT), which was used to
generate the environmental dynamics (Howard et al.,
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2009). The handle was free to rotate around its vertical
axis, and its position and orientation in extrinsic space
was measured using optical encoders on the handle
(58SA, IED) and motors. A fixed hand support was at-
tached to the handle to ensure that the handle could only
be grasped in a single way so that we could measure and
control the hand orientation. End point forces at the han-
dle were measured using an ATI Nano 25 six-axis force–
torque transducer (ATI Industrial Automation) mounted
below the handle. The handle position and orientation,
and the force data were sampled at 1 kHz. Visual feed-
back was provided using a computer monitor mounted
above the vBOT and projected veridically to the subject
via a mirror.

The hand cursor was displayed as a circular disk (0.5
cm radius) with a small bar emanating from the disk
displaying the orientation of the handle (i.e., hand). Simi-
larly, the start location and target were also displayed as
circular disks (1.0 cm radius), each with a bar indicating
the required hand orientation at the start and end of a
movement (Fig. 1A, inset). On all trials, the start and target
orientation were identical but could vary between trials.
Prior to movement, the hand was required to be within the
start location (positional tolerance, 0.5 cm) and with ori-
entation bars aligned (orientation tolerance 5°) for 750 ms.
A tone sounded to initiate the trial. Movements were made
from the central start location to one of six possible
targets equally spaced around a circle with a 10 cm
radius. A movement ended once the hand was at the
target (positional tolerance, 0.8 cm; orientation tolerance,
12.5°). Feedback was given as to whether the movement
was too slow or fast, and if the peak speed was 50 ! 8
cm/s, a reward counter increased. The robot passively
moved the hand back to the start position. Subjects took
short breaks every 100 trials.

Paradigm overview
For the control group, all movements were made with the
same hand orientation, whereas, for the other three
groups, each movement was performed with three differ-
ent hand orientations. The three hand orientations were a

neutral position and !30°. The neutral orientation was
with the hand slightly flexed, so that all postures could be
comfortably reached. Initially, subjects performed 36 fa-
miliarization trials in a null field. Importantly, the end point
location for movements in all three hand orientations were
matched in Cartesian space. This means that for each set
of hand orientations, the shoulder and elbow joint motions
were slightly different.

The experiment was performed in two stages running
consecutively, as follows: a pre-exposure phase (240 tri-
als) was followed by the exposure phase (1320 trials). The
pre-exposure phase was performed in a null field, while
the exposure phase had a velocity-dependent force field.
The exact nature of this force field varied between the
experimental groups. Throughout the pre-exposure and
exposure trials, blocks of trials were performed that in-
cluded field trials (to all six targets) and channel trials (to
four of the six targets). Channel trials were only used for
the four targets in which significant lateral forces were
applied by the force field. In the other two directions, a
resistive force was produced, making channel trials unin-
formative (Fig. 2A). On a channel trial, the movement was
confined to a simulated mechanical channel with a spring
constant of 8000 N/m and damping of 2 Ns/m (Scheidt
et al., 2000; Milner and Franklin, 2005).

In the pre-exposure phase, each block (48 trials) con-
sisted of 36 field trials (2 to each of the six targets with
each of the three hand orientations) and 12 channel trials
(1 to each of the four targets with each of the three hand
orientations). In the exposure phase, each block (66 trials)
consisted of 54 field trials (3 to each of the six targets with
each of the three hand orientations) and 12 channel trials
(1 to each of the four targets with each of the three hand
orientations). Within a block, the order of the trials was
pseudo-randomized while ensuring that two channel trials
never occurred consecutively. A different pseudo-random
sequence of trials was used for each subject.

Control group
For the control group, only the neutral hand orientation
was used, and these subjects performed the same total

A B C D

Figure 1. Experimental design and learning. A–D, Hand orientations and associated force fields, as force vectors experienced by the
hand (zero velocity represented by the black circle) for the four groups of subjects. Note that the three vector fields are displayed
separately, for clarity, but act over the same workspace. Similarly, the actual end point location of the hand for the three hand
orientations is matched across the three conditions, but is separated here for clarity. Start location, targets, and cursor were displayed
as a circle, showing position with a line indicating the orientation (inset).
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Figure 2. Force field conditions and movements across the experimental design. The wrist configuration (flexed, neutral, and
extended) is shown for the three columns at the bottom of the figure. A, The control group always performed movements in six
directions with the neutral wrist configuration. B, The Cartesian group performed reaching six reaching movements with the same
Cartesian direction and forces for all three wrist orientations. C, The object group. The six reaching directions were rotated for each
wrist orientation such that the forces experienced were identical to the Cartesian condition (but rotated by 30°). D, For the anti-object
group, the force field and the reaching directions rotated in the opposite direction to the wrist. However, the forces experienced still
matched those of the other groups. Importantly, the force fields and reaching directions on the middle wrist configuration were
identical across all four groups.
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number of reaching movements as all other groups. This
group performed reaching movements to the six targets,
and the force field dynamics were given by the following:

F ! B·ẋ

B ! !"19.62 "0.94
"0.94 11.62 "

where F is the vector of x- and y-forces applied to the
hand in N, and ẋ is the vector of hand velocities in meters
per second (Fig. 1, vector field shown as a function of
hand velocity with stationary shown by the central dot).
This skew-viscous force field resists movements in some
direction, assists in others, and acts at an angle to the
movement direction for yet other movement directions
(Fig. 2A). Critically, unlike a viscous curl field, the skew-
viscous field has a clear orientation (e.g., the axis of
movement that is purely resistive). As this group of sub-
jects performed the movements with only one hand ori-
entation (the neutral one), in common with previous
studies, the coordinate system of the dynamics is ambig-
uous (Shadmehr and Mussa-Ivaldi, 1994; Berniker et al.,
2014).

Cartesian group
The Cartesian group of subjects performed reaching
movements to the six targets with three different hand
orientations (18 total conditions). The six targets were
equally spaced at 60°, and the location of the targets was
maintained for all hand orientations. The forces experi-
enced differed across the six movements but, critically,
did not vary with the hand orientation, and therefore the
field is unambiguously consistent with forces represented
in a Cartesian frame (Figs. 1B, 2B ). Importantly, the end
point location of the hand for the three hand orientation
conditions is matched, meaning that the elbow and shoul-
der angles are slightly different for these conditions. How-
ever, the wrist angle (intrinsic coordinates) is very different
for the three orientations, and the field is independent of
this angle, meaning that the Cartesian representation is
distinguishable from an intrinsic or joint-based represen-
tation.

Object group
The object group of subjects also performed reaching
movements to six targets with the three hand orientations.
The force field was implemented as follows:

F ! RBR"1ẋ

where R is the rotation matrix that corresponds to the
hand orientation and thereby rotates the force field by the
same angle as the instantaneous hand orientation. Al-
though subjects were required to maintain the orientation
of the hand at the start and end of the moment, during
each movement small variations from this orientation
were tracked and used to update the force field on-line
within a movement. In this manner, the force field rotates
with the orientation of the hand, identical to the way in
which the dynamics of a grasped object would rotate as
the hand orientation changed (Fig. 1C). We chose to

rotate the targets with the required hand orientation
(!30°) so as to ensure that the forces experienced in this
condition were identical to the Cartesian condition with
the exception that the association of the forces to the
movement varied with the hand orientations (Fig. 2C). This
ensures the mathematical complexity to be constant
across groups. The forces matched those of the Cartesian
group for the same target directions for the neutral hand
position. Therefore, for this group the dynamics are un-
ambiguously consistent with forces that rotate with the
hand orientation.

Anti-object group
The anti-object group of subjects performed reaching
movements similar to those performed by the object
group, with the exception that the force field rotated in the
opposite direction to the rotation of the hand (Fig. 1D).
This produced force fields that were identical to those of
the object group, but that were associated with different
hand orientations (Fig. 2D). Therefore, the mathematical
complexity of this field is the same as that for the object
group, but rotates in the opposite direction to the way in
which a hand-held tool would behave. Again, the targets
rotated with the desired hand orientation, and the forces
matched those of the Cartesian group for the same target
directions in the neutral hand position. Note that, as the
targets are spaced at 60° intervals, !30° rotations of the
targets are identical.

Analysis
Analysis of the experimental data was performed using
Matlab R2015a. Individual trials were aligned on move-
ment onset. For each nonchannel trial, the maximum
perpendicular error (MPE) was calculated and used as a
measure of the kinematic error. The MPE is the signed
maximum perpendicular distance between the hand tra-
jectory and the straight line between the start and end
targets. The sign of the measurements for different move-
ment directions and hand orientations was adjusted so
that positive numbers reflected errors due to the perturb-
ing force field. The end point forces were examined on the
channel trials to further measure the amount of adapta-
tion. The force produced by subjects into the wall of the
simulated channel was integrated across the movement.
To evaluate the degree of compensation (Smith et al.,
2006), the measured force was divided by the amount of
force that would be required for perfect compensation in
the force field (calculated as the force field strength mul-
tiplied by the actual velocity on each trial). The values of
the percentage force compensation throughout the ex-
periment are based on the compensation required in the
force field. Therefore, values in the null force field before
learning (pre-exposure phase) should be close to zero.

We performed hypothesis-based planned comparisons
and report uncorrected p values to determine statistical
significance (p # 0.05). ANOVAs were examined in SPSS
(version 21) using the general linear model. Comparisons
were made with main effects of epoch (pre-exposure,
early exposure, or late exposure), force field condition
(four levels), movement direction (six levels), and hand
orientation (three levels), when appropriate. For the object
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and anti-object groups, the targets rotated with the hand
orientation and for the ANOVA we matched up the six
directions across orientations so that they had the same
end point forces (for a straight line movement). Early and
late exposures correspond to the first and last 18 trials in
the force field. The final level of adaptation was examined
across the final 330 trials (with MPE and force compen-
sation calculated from 270 and 60 trials, respectively). If a
significant main effect was found, Tukey’s HSD post hoc
test was used to examine differences.

The mean MPE and force compensation across sub-
jects during the exposure phase of the experiment were fit
with the following exponential functions:

y ! #·e"$·k % C

where C is the asymptote of final adaptation, $ is the time
constant or rate of adaptation, k is the trial number, and #
is the magnitude of adaptation. The exponential function
was fit using the Matlab function nlinfit, and 95% confi-
dence intervals (CIs) of the function and the parameters
were determined using nlpredci, and nlparci, respectively.
To examine the statistical differences between our param-
eter estimates, we performed block bootstrapping in
which we left out each possible set of three participants
from each group and fitted the remaining seven. To test
whether each parameter varied between the four groups,
we generated all possible differences in each parameter
from our bootstrap to generate a new bootstrap sample
(120 $ 120 samples). The six comparisons were then
examined at a Bonferroni-adjusted statistical level (p #
0.0083).

Results
Subjects performed center– out reaching movements to
six targets, and were required to match both the posi-
tion and orientation at the start and end of each reach.
For the control group, all movements were made with
the same neutral hand orientation (Fig. 1A), whereas for
the other three groups, each movement was performed
with one of three different hand orientations (neutral
position and !30°; Fig. 1B). For all groups, movements
in the null field were approximately straight (Fig. 3A–D,
first 240 trials).

For the Cartesian group, the force depended on hand
velocity but, critically, did not vary with the hand orienta-
tion, and, therefore, the field is unambiguously consistent
with forces represented in a Cartesian frame (Fig. 1B). For
two of the groups, the entire force depended on the hand
orientation, either rotating with the hand (Fig. 1C, object-
group), consistent with the dynamics of a hand-held ob-
ject, or counter to the hand rotation (Fig. 1D, anti-object).

On the introduction of a force field in the exposure
phase, large increases in MPE were observed (Fig. 3A–D,
gray region) that were not significantly different across the
four groups (F(3,660) % 0.864; p % 0.46; initial exposure).
Across trials, the MPE was reduced, and we compared
the final levels of adaptation (last 270 trials) using an
ANOVA with factors of group, movement direction, and
hand orientation. Only the main effect of group was sig-
nificant (F(3,107,400 % 620.01; p # 0.001), with no signifi-
cant effect of wrist angle (F(2,21,540) % 0.86; p % 0.42),
movement direction (F(6,21,540) % 0.62; p % 0.69), or inter-
actions (all p & 0.09). Post hoc tests indicated that the

A B C D

E F G H

Figure 3. Adaptation to the force fields. A–D, Maximum perpendicular error. E–H, Force compensation percentage for the four groups
(mean and SE across subjects) with exponential fits. Blocks of 10 nonchannel trials were used for the MPE, while blocks of four
channel trials were used for the force compensation. The gray shaded region indicates the exposure period. The dashed curves are
the exponential fit to the control group for comparison.
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final error for the anti-object group was significantly
greater than all others (all p # 0.001). The object group
had a significantly larger final error than both the Carte-
sian and control groups (p # 0.001). The Cartesian group
had a slightly smaller error than the control groups (p %
0.016). Importantly, the learning within each group was
similar for each of the hand orientations (Fig. 4A–C), and
subjects were able to control the hand orientation
throughout the movements (Fig. 4D).

To examine the feedforward component of learning,
independent of any nonspecific changes in arm imped-
ance (Franklin et al., 2003, 2007), we examined the lateral
force produced on occasional channel trials (Scheidt
et al., 2000; Milner and Franklin, 2005) and calculated the
percentage compensation for the force field (Fig. 3E–H). In
the pre-exposure phase, the subjects generated minimal
force into the channel wall (Fig. 3E–H, first 240 trials). At
the end of the exposure phase, there was a significant
difference in the final force compensation values across
the groups (F(3,2360) % 72.66; p # 0.001, last 60 channel
trials, corresponding to the same interval as the 270 trials
examined for MPE). Post hoc tests showed that the com-
pensation for the anti-object group was significantly less
than all others (all p # 0.001). There were no significant
differences between the Cartesian and object groups (p %
0.1) or between these two and the control group (p % 0.82
and p % 0.47 respectively).

Importantly, our experimental design meant that all
groups experienced the same movements and forces for
the neutral wrist orientation (Fig. 2). As such, we can
directly compare the adaptation that occurred only in this
single wrist posture, thereby controlling for both the
movement and field experienced (Fig. 5). The results dem-
onstrate that the same findings across all wrist postures
(Fig. 3) are also present in this single wrist posture con-
dition.

To compare the rate and final level of learning across all
groups, we fit exponential curves to both the kinematic
error and force compensation during exposure trials (Fig.
3, smooth curves show the fits and dashed curve is fits to
the control group for comparison). Figure 6 shows the fits
for the four groups with 95% CIs. We used bootstrap
analysis (see Materials and Methods) to compare the time
constants and asymptotes across the groups. For the
kinematic error (Fig. 6A), the time constants for the control

and Cartesian groups were not significantly different from
one another (p % 0.38) and were significantly shorter than
those for either the object or anti-object groups (all p #
0.00001). The object group time constant was not differ-
ent from that for the anti-object group (p % 0.09). For the
final maximum perpendicular error level (asymptote), the
lowest asymptote was seen in the Cartesian and control
groups (not significantly different; p % 0.16), while the
object group had a significantly higher asymptote (all p #
0.00001). Again, the largest asymptote was found for the
anti-object group (all p # 0.004).

A similar pattern was found across the parameters de-
termined from fits to the force compensation data (Fig.
6B). For the time constants, there was again no difference
between the Cartesian and control groups (p % 0.18);
however, both groups were significantly faster than the
object or anti-object groups (all p # 0.00001). Again, no
significant difference was found between the object and
anti-object groups after multiple comparison correction (p
% 0.03). There were significant differences in the level of
final adaptation (asymptote). There was no difference be-
tween the control group and the Cartesian group (p %
0.05) or the object group (p % 0.01) after correction;
however, there were significant differences between the
Cartesian and object groups (p # 0.0001). The anti-object
group had significantly lower final adaptation than all
three groups (all p # 0.00001).

Interestingly, there were strong differences between the
results based on the maximum perpendicular error and
those based on predictive force compensation. While
these two measures of learning normally give similar re-
sults, the kinematic error can be reduced independent of
predictive force compensation by increasing the stiffness
of the limb by cocontraction or increased feedback gains
during reaching (Burdet et al., 2001; Franklin et al., 2003,
2012). In our study, while the force compensation results
suggested that the object group learned as well as the
Cartesian and control groups, the final level of kinematic
error measure was still higher. This could indicate that the
cocontraction was lower in this object group, but other
biomechanical factors related to limb geometry (Burdet
et al., 2013) could also have played a role. In either case,
the difference in final adaptation for the object group was
only on the order of 2 mm.

A B C D

Figure 4. Learning and kinematics as a function of hand orientation. A–C, Learning curves separated by hand orientation for three
groups. D, Hand orientation (mean ! SE averaged as in Fig. 1) for the four groups as a function of time (colors are as in Fig. 1).
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Discussion
Although early studies have suggested that force field
adaptation is learned in intrinsic coordinates (Shadmehr
and Mussa-Ivaldi, 1994; Malfait et al., 2002, 2005), our
results clearly show that a force field explicitly presented
in Cartesian coordinates is learned on a very similar time-
scale and with levels of learning similar to those of an
ambiguous force field (Fig. 3E–H). An ambiguous force
field would be learned in the preferred coordinate system
(e.g., intrinsic) if such a preferred coordinate system ac-

tually exists. In other words, if the dynamic learning is
represented in intrinsic coordinates, then we would have
expected the Cartesian condition to be more difficult to
learn and have a higher final error than the ambiguous
field. A similar argument can be made for the field pre-
sented in object-based coordinates, where the final force
compensation level was not significantly different from
that of the Cartesian or control group. Therefore, our
results suggest that both the Cartesian group and the
object group learned to represent the dynamics in the
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Figure 6. Time constants and asymptotes of learning across conditions. A, Left, The mean (!95% CI) of the exponential fits to the
group-averaged MPE for the exposure phase. Right, The asymptote and time constant (!95% CI) of the exponential fits (all
comparisons were significant at the p # 0.0083 level, except for those shown with the flat bar and label n.s. indicating that the
comparison was not significant after Bonferroni correction). B, Fits and parameters for the force compensation data as in A.
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coordinate system in which they were presented, demon-
strating a flexibility to sculpt the coordinate system when
coding dynamics.

We consider the object-based force field as a singular
dynamic experienced in three different hand orientations.
However, another possibility is that the sensorimotor sys-
tem represents this as three separate force fields learned
independently for each hand orientation. This would place
our findings in agreement with those demonstrating that
hand orientation (Gandolfo et al., 1996; Yeo et al., 2015) or
similar differences in the limb state (Hwang et al., 2003;
Howard et al., 2013) can be used to reduce interference
and learn opposing force fields, although extending them
to three states. However, if this was the case for the
object-based force field, then the anti-object-based force
field should have been equally easy to learn as the three
separate context-dependent fields. Instead, the demon-
stration that the anti-object force field is not learned
equally well shows a limitation in the ability of small
changes in hand orientation to allow for independent
learning of different force fields over a similar state space.
Our results indicate that force field presentations that do
not occur naturally are not as quickly or well learned
compared with those that can be represented in a more
natural coordinate frame.

We propose that ambiguous dynamics are represented
in a mixture of coordinate representations (Haswell et al.,
2009; Brayanov et al., 2012; Berniker et al., 2014; Parmar
et al., 2015), such as Cartesian, intrinsic, and object
based, with the weighting of this mixture being driven by
the likelihood of each particular representation. Such a
mixture would provide a rapid adaptation to the ambigu-
ous force field with the mixing components then appro-
priately reweighted if the force field became unambiguous
(as in the Cartesian and object groups). However, such a
mixed representation would struggle to learn represen-
tations that could not be achieved through mixing (anti-
object).

Our findings shed light onto why so many conflicting
results about the nature of coordinate representation
were found, such as evidence for both intrinsic (Shad-
mehr and Mussa-Ivaldi, 1994; Shadmehr and Moussavi,
2000; Malfait et al., 2002, 2005) and extrinsic (Krakauer
et al., 2000; Criscimagna-Hemminger et al., 2003; Bur-
gess et al., 2007) generalization. Instead, our work further
supports the idea that dynamics can be represented in a
mixture of coordinate systems (Haswell et al., 2009; Bray-
anov et al., 2012; Berniker et al., 2014), of which intrinsic,
extrinsic, and object coordinate systems are three of the
(possibly many) representations available. Our results jibe
with recent neurophysiological studies showing that many
neurons show complex mixed selectivity in motor tasks
(Churchland et al., 2012) and more cognitive tasks (Mante
et al., 2013; Rigotti et al., 2013). Although the results of the
anti-object group clearly preclude the possibility that any
arbitrary mapping can be learned on a short time scale
("2 h), a critical question is whether these coordinate
representations are fixed a priori or whether they can be
learned with sufficient experience.
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