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Faisal AA, Wolpert DM. Near optimal combination of sensory and
motor uncertainty in time during a naturalistic perception-action task.
J Neurophysiol 101: 1901–1912, 2009. First published December 24,
2008; doi:10.1152/jn.90974.2008. Most behavioral tasks have time
constraints for successful completion, such as catching a ball in flight.
Many of these tasks require trading off the time allocated to percep-
tion and action, especially when only one of the two is possible at any
time. In general, the longer we perceive, the smaller the uncertainty in
perceptual estimates. However, a longer perception phase leaves less
time for action, which results in less precise movements. Here we
examine subjects catching a virtual ball. Critically, as soon as subjects
began to move, the ball became invisible. We study how subjects
trade-off sensory and movement uncertainty by deciding when to
initiate their actions. We formulate this task in a probabilistic frame-
work and show that subjects’ decisions when to start moving are
statistically near optimal given their individual sensory and motor uncer-
tainties. Moreover, we accurately predict individual subject’s task per-
formance. Thus we show that subjects in a natural task are quantitatively
aware of how sensory and motor variability depend on time and act so as
to minimize overall task variability.

I N T R O D U C T I O N

Real world behavior requires the brain to combine a stream
of sensory information and motor actions over time. This
problem is complicated given that sensory inputs and motor
outputs are subjected to noise and, more generally, uncertainty
(Faisal et al. 2008). In the sensory domain, it has previously
been shown that human subjects have knowledge about the
uncertainty in their sensory modalities and can combine these
modalities in a statistically optimal fashion to reduce overall
sensory uncertainty (van Beers et al. 1996; Ernst and Banks
2002; Hillis et al. 2004; Jacobs 1999; Knill 2003; Sober and
Sabes 2005; van Beers et al. 1999). However, these studies
examine only synchronous presentation of stimuli and there-
fore ignore the role of time in acquiring sensory information. In
the motor domain, goal-directed movements seem to be con-
ducted in such a way as to reduce motor variability (Harris and
Wolpert 1998) and minimize the task relevant parts of move-
ment uncertainty (Todorov and Jordan 2002). Thus in action
and perception tasks, subjects behave in a way to minimize the
negative consequences of uncertainty (Battaglia and Schrater
2007). Unlike previous studies, most natural situations involve
asynchronous (and possibly overlapping) episodes of sensory
information acquisition and motor action, from reaching to an
object that you have previously looked at to using your side
view mirror while driving. Thus successful behavior requires a

combination of sensation and action across time. Here, we
examine how subjects choose to allocate time to perception and
action.

To do this we used a simple virtual reality experiment,
catching a falling ball with a paddle (Fig. 1A). We enforced a
trade-off between perception and action phases by making the
ball invisible once movement is initiated, such that no addi-
tional sensory information can be acquired about the ball’s
trajectory and landing position. Therefore subjects can trade-
off their sensory and movement uncertainties by choosing the
amount of time they allocate to perception and the amount of
time remaining for action before the ball touches the ground—
that is, by making the decision when to switch from perception
to action. Our approach is to measure independently the time
dependence of sensory variability and motor variability and to
predict their combined effect on the ball catching task. Note
that the use here of the term variability encompasses many
sources. For example, motor variability (here the endpoint
variability of the position of the paddle) is constituted by
signal-dependent motor noise (Harris and Wolpert 1998), mo-
tor planning variability (Churchland et al. 2006; van Beers et
al. 2004), noise in nerve fibers of the CNS and PNS (Faisal and
Laughlin 2007), and other sources (Faisal et al. 2008).

We investigate whether subjects have knowledge of the time
dependence of their uncertainty in both perception and action
by examining whether they choose the optimal switching time
so as to minimize the overall variability of the task and
maximize their chances of catching the ball.

We can consider an ideal actor whose aim is to maximize the
probability of catching the ball by minimizing the distance
between the paddle and ball at touchdown. Both sensory and
motor variability contribute to the overall variability of where
the paddle is placed relative to the ball (see Fig. 1B for
illustration). The longer the actor perceives, the lower the
sensory variability about where the ball will land (Fig. 1B,
green curve and axes) but the higher the motor variability,
because the remaining time for movement decreases (Fig. 1B,
blue curve and axes). An ideal actor should therefore choose a
switching time that minimizes the combined effect of sensory
and motor variability (Fig. 1B, black line). To predict the
optimal switching time for each subject, we independently
quantify in two separate experiments the time dependence of
the sensory and motor variability (by their variance). We
assume that the two sources of sensory and motor variability
are independent, and therefore the combined task variability !C

2

is the sum of the time-dependent sensory variability variance
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!S
2 and motor variability !M

2 Therefore if the total task time is
T and subjects switch from perception to action at time t, this
means they have time t for sensing and the remaining time
(T ! t) for moving. Therefore we would predict that the task
variability is given by

!C
2 " t

Switching time
È

#Ç
Task variability

" !S
2" t

Sensing time
È

#Ç
Sensory variability

# !M
2 " T $ t

Movement time
È

#Ç
Motor variability

(1 )

This allows us to find the value for the switching time t that
minimizes !C

2 "t# and thus maximizes the probability of catch-
ing the ball.

We can directly predict the subject’s performance with
respect to their task instruction (catching as many balls as
possible). Using Eq. 1 , we calculate the probability of
catching the ball for the ideal actor and compare it to the
subject’s actual performance for each paddle width. The
subject’s catch performance will be systematically worse
than the optimal prediction if the subject chooses subopti-
mal switching times, if another source of variability has a
notable effect (as captured by a third variability term in the
sum of Eq. 1 ), or if significant correlations between sensory
and motor error exist.

Preliminary results were presented at the Neural Control of
Movement Conference 2007 (abstract dated December 15,
2006).

M E T H O D S

Subjects and manipulandum

After providing written informed consent, 11 subjects (6 naı̈ve
university students and 5 naı̈ve laboratory members) participated
in the main study. A second sequence-controlled study was carried
out with six different right-handed naı̈ve university students. All
subjects were right-handed and between 19 and 37 yr old. The
experiments were carried out in accordance with institutional
guidelines, and a local ethics committee approved the experimental
protocols.

Subjects controlled the horizontal movement of a paddle with the
aim of catching a falling ball on the computer screen. While seated,
subjects held the handle of a robotic manipulandum with two degrees
of planar freedom of which only the horizontal axis was used to
control the task. The manipulandum is a custom-built device (vBOT)
consisting of a parallelogram constructed mainly from carbon fiber
tubes that were driven by rare earth motors via low-friction timing
belts. Software control of the robot was achieved by means of a
control loop running at 1-kHz measuring position of the handle. A
planar virtual reality system was used that prevented subjects seeing
their hand and allowed us to present visual images into the plane of
the movement (for full details of the setup, see Kording et al. 2004).
The setup was calibrated such that the position of the paddle center
lined up visually with the center position of the grasped handle. Each
subject completed a sequence of three experiments in the following
sequence: catching (600 trials), sensory variability (560 trials), and
motor variability (560 trials).

FIG. 1. Overview of the ball catching experiment. A: the ball is launched from a central position with random horizontal velocity and is accelerated by artificial
gravity toward the ground (green line); the total task time to touchdown is therefore constant. Subject controls a veridically aligned paddle of varying width w
(the subjects hand center underneath the flat screen is matched to the paddle center). After the ball is launched, the subject chooses when to start moving the
paddle from the far right start position (x $ 0). Once paddle movement begins, the ball becomes invisible as it falls toward the ground. At all times, a thin
horizontal line indicates the vertical position of the ball. A successful catch occurs when the ball center touches ground level within the width of the paddle;
otherwise, to provide feedback, the ball is rendered visible and continues its trajectory until it disappears at the bottom of the screen. B: time and uncertainty
relationships in the ball catching experiment. In general, sensory uncertainty (green curve and axis) decreases with time, and so does motor uncertainty (blue
curve and axis). However, because of the design of the experiment, the more task time is spent sensing, the less task time remains for movement. Therefore as
task time progresses and the ball approaches ground level, motor uncertainty increases. Thus the switching between sensory and motor uncertainty causes a
combined uncertainty (black curve) with a globally minimal task error at the accordingly optimal switching time. C: task error (measured as ball landing position
minus final paddle position) SD plotted vs. trial [batch of 20 trials for each subject (blue crosses), mean across 11 subjects (blue line), and SE (shaded region)].
The horizontal level line represents the minimal task error across subjects if they would have used the optimal switching times for each trial.
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Ball catching experiment

The ground level (y $ 0 cm) was marked by a horizontal 38-cm bar
(Fig. 1A). A virtual paddle could be moved along ground level (x $
17 cm corresponded to the horizontal center of the screen—positive
values of x are to the left of the starting point) and was veridically
aligned with the invisible manipulandum handle underneath it. Before
each trial, a paddle of width w $ {0.5, 1, 2, 4} cm was chosen
randomly and displayed. Each trial began with the subject having to
move the paddle’s center to its start position at 0 cm (close to the right
corner of the screen) and remain there within a centered 5-mm
tolerance window until the ball appeared.

After the paddle initial position is reached, the ball (represented by
a filled white circle of 8 mm diam) appeared at its initial position. In
every trial, the ball fell from x $ 17 cm, y $ 25 cm down toward the
bottom edge of the screen. At all times, a green horizontal bar (1 mm
high and 38 cm wide) was displayed that tracked the vertical position
of the ball throughout the trial. When the green bar appeared, the task
started and the ball began to move. Up to this point, any movement of
the paddle beyond its tolerance window would trigger a repetition of
the trial (mistrial). The ball fell under simulated gravity and was
launched with a horizontal velocity that was drawn uniformly between
!7.5 and 7.5 cm/s, such that landing positions resulted in uniformly
distributed movement distances between 6.5 and 27.5 cm. The gravity
constant was set to g $ 25.5 cm/s2 so that the total ball motion time
(from launch to landing) was T $ 1,400 ms.

At any time when the ball was falling, the subject could start
moving the paddle to catch the ball. As soon as the paddle was outside
its tolerance window, the ball would become invisible, but the falling
bar would still be visible and continue to move. If the center of the ball
was within the paddle width at ground level, the trial was successful
and the screen turned green. If the ball was not caught, the trial was
unsuccessful, the screen turned red, and the ball became visible as it
crossed the ground level and remained visible for a further 3 cm of
trajectory. To motivate the subjects, the current score was displayed as
the number of successful trials minus the number of unsuccessful
trials and mistrials. Each paddle width was tested on 150 trials,
resulting in 600 trials in total.

Sensory variability experiment

We measured subjects’ sensory uncertainty by letting them observe
the falling ball for varying durations and asking them to indicate ball’s
landing position by moving the paddle (here, a 1-mm-wide white line)
to the estimated position and clicking a button. They were allowed
arbitrary time to make this estimate to minimize the effects of motor
variability. After clicking, the subjects were briefly shown the correct
landing position of the ball by displaying the ball and a 1-mm-wide
black dot marking its center. The ball’s initial velocity was chosen
randomly so that its landing positions varies over x $ 17 cm % {9.8,
7.7, 4.2, 2.1, !1.4, !4.2, !6.3} cm, as were observation durations
t $ 200, 400, 650, 1100 ms, and each pair of observation duration and
ball landing position was tested 20 times. The 560 trials took & 50 min
to complete.

Motor variability experiment

We measured a subjects’ motor variability with respect to the
movement time and distance moved. The paddle was a 1-mm-wide
white line. At the start of each trial, a fixed ball location (x) was
marked on the ground, which remained visible throughout the trial,
such that time-dependent sensory uncertainty was reduced to a min-
imum. Subjects observed a horizontal bar falling at a constant speed
from a height of 25 cm to ground level, which provided timing
information. During this time, the subjects were instructed not to
move (any action would have triggered a mistrial). The duration of the
falling bar indicated visually how much time the subject was allowed

on this trial. After the bar had reached the ground, it was positioned
again at the top and subjects could start the trial at any time by moving
' 5 mm from the paddle’s initial position (the target was visible at all
times). Subjects were required to reach to the target with their paddle
as accurately as possible, within the indicated movement time. As
soon as subjects initiated their movement, the bar began to fall again
at the same rate, indicating the total time that subjects had to perform
the movement. Their paddle froze the moment the bar touched the
ground. The distance between the paddle’s frozen position and the
target was recorded as the trial’s motor error.

The movement times were chosen randomly from t $ 300, 500,
750, 1100 ms. Ball landing positions were chosen randomly from x $
17 cm % {6.4, 4.9, 2.4, 0.9, !1.6, !2.6, !5.1} cm. Each pair of
movement time and ball landing positions was tested 20 times. The
560 trials took & 50 min to complete. For the successive analysis, we
removed the trials with movement times of 300 ms, because subjects
showed a consistent movement bias, reflecting their inability to move
fast enough to reach the target, thereby undershooting on the majority
of trials. Because subjects almost never moved this fast in the
combined task (cf. Fig. 3; fastest movement time had a mean of 427
ms across subjects), we fitted the motor variability using only the
slower movement times (500, 750, 1100 ms).

Note that the ball landing positions and movement distances in the
sensory variability and motor variability experiments were different
from those used in the actual ball catching experiment. This mini-
mizes the effect of training subjects to specific ball landing positions.
In particular, the ball catching experiment tested a range of positions
uniformly, whereas the sensory and motor variability experiments
tested seven discrete positions to allow a defined measurement of
variability at each position. In the sequence-controlled experiments,
the sensory and motor positions were the same (as by balancing the
sequences we could factor out training effects). The ball catching task
imposes an explicit trade-off between perception and action. We
therefore assume that by the time the subjects decide to initiate their
movement, they have also decided where to move. Thus their move-
ment toward their estimated ball landing position should be analogous
to their movement toward the displayed ball in the motor variability
experiment.

Sequence controlled study

In the first study, each subject experienced the ball catching task
first. This was done to ensure that they did not become trained in
knowing about their own sensory and motor variability simply
through the sensory and motor experiments. To test whether the order
of our experiments could have affected our results, we ran a second set
of experiments with six different naı̈ve subjects. Each subject expe-
rienced one of the six possible sequences of sensory, motor, and ball
catching experiments with a single paddle width (2 cm), as shown in
Table 1.

To further corroborate our findings, we ran these subjects on a
different set of parameter values: subjects had to move faster (total
task time T $ 1000 ms, by setting the gravity constant to g $ 50
cm/s2) and over longer distances (movement distances for ball landing
positions were 9.6–30.5 cm), while the paddle width was held

TABLE 1. Sequence order of the 3 experiments

Subject Sensory Motor Ball Catching

A 1 2 3
B 1 3 2
C 3 1 2
D 3 2 1
E 2 3 1
F 2 1 3

The subject labels match those of Fig. 4.
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constant at 2 cm. In the sensory experiment, ball landing positions of
x $ 20 cm % {9, 6, 3, 0.5, !3, !6, !9} cm and times t $ 250, 375,
500, 750 ms were probed, whereas in the motor experiment, move-
ment distances of positions of x $ 20 cm % {9, 6, 3, 0.5, !3, !6, !9}
cm and times t $ 375, 500, 750 ms were probed.

Analysis

SENSORY VARIABILITY EXPERIMENT. The sensory variability exper-
iment was used to calculate the SD of error between the ball’s true
landing location and the sensory estimate of the location [!s(t)]. This
was calculated separately for each subject and each observation’s
duration. We collapsed these estimates across different landing posi-
tions for each subject. To provide a parameterized model of how the
SD depends on observation durations, t, we fit a power law to estimate
two parameters (a, b) for each subject, !s(t) $ a ( tb. The power law
had the highest R2 values among two-parameter exponential and
power law fits.

MOTOR VARIABILITY EXPERIMENT. The motor variability experi-
ment was used to calculate the SD of error between the ball’s fixed
location and the position of the paddle center, !M(t, x). This was
calculated separately for each subject, each movement time t, and
movement distance x. To model the distance and movement time-
dependent variability !M(t,x), we made use of Fitt’s law (Fitts 1954).
This empirical law states that pointing towards a target of width V at
a distance U requires a movement time MT $ c % d log2(2U/V),
where c and d are task- and subject-specific parameters. We equated
movement distances U $ x and movement time MT $ t. We used
the SD of movement variability towards pointing to a point-like
target (our task) as equivalent measure of pointing towards a target
of size V $ !M. To provide a parameterized model of how the SD
depends on movement time and distance, we solved Fitts’ law for
the movement variability !M to estimate two parameters (c, d) for
each subject

!M"t, x# "
2x

2
t!c

d

" x21!
t!c

d

Modeling the combined task

For each trial of the ball catching task, we measured the switching
time from perception to action. The task error was defined as the
distance between the center of the paddle and the ball’s landing
position (independent if the ball was caught or not). Given the
independent measures of sensory and motor variability in the previous
two experiments, we can predict the optimal switching time from
perception to action and the probability of a successful trial in the ball
catching task. We assume that the contribution of motor planning
variability to overall motor variability is similar in the motor variabil-
ity experiment and the ball catching experiment, because the move-
ment is quite simple.

To predict optimal switching times, we make two assumptions.
First, we assume that the sensory and the motor errors are inde-
pendent of each other. Second, we assume that subjects aim to
move the center of the paddle to where they estimate the ball will
land—that is, they are unbiased (in addition, we examined a model
where subjects were optimally biased, but this has minimal effect
because optimal bias is well below movement variability). We
model the variance in the ball catching task as the sum of the
variances of the independent sensory and motor tasks (assuming
the movement is to the ball’s true landing position). Therefore on
a trial with total task time, T, where the ball will land a distance,
x, from the starting paddle position and the switching time is t, the
predicted variance is

!C
2 "t, x# " !S

2"t# # !M
2 "T $ t, x# " "a ! tb#2 # "x21!

T!t!c
d #2

(2 )

where a, b, c, and d are the predetermined parameters that characterize
each subject’s sensory and motor variability. Therefore for any setting
of switching time t and ball landing location x, we can predict the
combined variance using Eq. 2 . By varying the switching time, t, we
can find the optimal switching time to minimize the error.

Subjects controlled a paddle moving along the horizontal axis by
moving a manipulandum that was free to move in a plane. However,
any variability in the vertical axis does not affect the paddle position.
We examined the final vertical deviation at the end of the movement
in both the motor task and the combined task across all subjects and
landing positions. The variability measured in SD was similar in the
two tasks (0.87 ) 0.05 vs. 0.99 ) 0.04 cm). Thus any effect of
vertical movement to the results should contribute equally to both the
combined task and the motor variability task. Hence, we analyze and
fit the data with respect to only the horizontal (task-relevant) move-
ment distance.

Prediction of catch performance

To predict the probability of catching the ball we assume that the
sensory and motor variability have a distribution that is Gaussian.
Therefore the probability of catching is simply the integral of the zero
mean Gaussian distribution with variance !C

2 "t, x# over the paddle
width (from –w/2 to w/2—that is, the paddle being under the ball).

We can predict the catch probability in two ways: First, we use the
empirical switching times and ball landing position on each trial for
each subject to calculate the catch for the sensory and motor variabil-
ity. We average the catch probabilities over all trials of a certain
paddle width and compare these with actual catch probabilities for
each subject. This prediction can be used to test our assumption that
the sensory and motor variability are Gaussian distributed, indepen-
dent, and additive in the catching task. Second, we can test the
hypothesis that subjects are optimal by predicting the catch probabil-
ity based on subjects using the predicted optimal switching times
instead of the actual switching times for each trials.

R E S U L T S

We devised three experiments to study the trade-off between
the time allocated to perception and action. We measured the
time dependence of sensory and motor uncertainty indepen-
dently (see METHODS for details) in two experiments, as well as
a combined perception-action task of ball catching. We present
the results of the ball catching experiment here, whereas we
relegate the results of our repetition using the sequence-con-
trolled experiments in the supplementary information,1 be-
cause we are reporting similar results.

Sensory variability experiment

In this experiment, we measured the time dependence of the
sensory variability, in a situation in which motor uncertainty
was negligible. On each trial, a ball was launched from the
same upper central screen location with a random horizontal
velocity component and fell toward the lower edge of the
screen under artificial gravity. The ball fell with a parabolic
trajectory for 1,400 ms before landing on the ground. The ball
vanished after a randomly prescribed time (sensing time) and
subjects had to indicate, without time constraints, where the
ball landed and were given feedback as to the actual ball

1 The online version of this article contains supplemental data.
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landing position. The levels of sensory variability were indi-
vidual to each subject and dependent on time. For a sensing
time of 200 ms, subjects’ sensory variability, as measured by
the SD between actual and estimated positions, ranged between
0.73 and 1.61 cm (median, 0.96 cm), whereas for a 1,200-ms
sensing interval, the range was between 0.27 and 0.51 cm
(median, 0.38 cm; Fig. 2A). Subjects’ mean sensory error bias was
small; the range of mean sensory error was !0.16 to 0.24 cm with
a median of !0.03 cm. To quantify the time dependence of the
sensory variability, we fit (after visual inspection of the data) a
power law of the SD of the sensory error (calculated for each
sensing time, pooled across ball landing positions) to the sensing
time (median R2 $ 0.51; R2 range, 0.36–0.76). Subjects showed
an inverse square root time dependence of the SD of the sensory
error—that is, a power law exponent of !0.55 ) 0.03 (SE) across
subjects. In our model, we assume that sensory error is not
dependent on the balls landing location, because the measurable
dependence is weak (median R2 $ 0.05; R2 range, 0–0.15). We
can thus interpolate the subject’s sensory variability for other
sensing times and ball landing positions using the time-dependent
square root power law.

The sequence-controlled version of the experiment produced
similar results. For a sensing time of 250 ms, subjects’ sensory
variability, as measured by the SD between actual and esti-
mated positions, ranged between 1.2 and 2.4 cm (median, 1.45
cm), whereas for a 750-ms sensing interval, the range was
between 0.47 and 0.92 cm (median, 0.65 cm). Thus sensing
error was considerably larger in this faster version of the sensor
variability experiment. Subjects’ mean sensory error bias was
small; the range of mean sensory error was !0.73 to 0.46 cm,
with a median of !0.13 cm.

Motor variability experiment

In the second experiment, we measured subject’s movement
variability. The sensory uncertainty about the target location was
reduced to a minimum by ensuring that the target was always
visible and stationary. The experiment was similar to the sensory
experiment; however, subjects were first shown a falling bar,
indicating the time they had to reach the ball at its fixed position
on the ground (the ball was always visible). Subjects could initiate
the trial by starting to move from their start position, resulting in
the bar falling again. The trial ended when the bar hit the ground,
at which point the paddle position froze. The difference between
the subject’s final paddle position and the ball position reflected
their motor error. The subjects’ motor error bias was small (range
of subjects’ mean motor error, !0.07 to 0.17 cm; median, 0.08
cm) compared with their motor variability SD.

In contrast to the sensory error, the movement error also
depends on the distance the paddle had to be moved to reach
the ball’s position. We used Fitts’ law (Fitts 1954) to describe
the relation between motor error SD with movement time and
distance. This nonlinear relationship was fit by the data across
subjects (median R2 $ 0.72; R2 range, 0.22–0.96; Fig. 2B).
This fit allowed us to interpolate the motor error SD for other
ball landing positions and movement times.

The separate sensory and motor experiments allowed us to
measure the individual terms on the right-hand side of Eq. 1 .
However, because the motor error is distance dependent, we
reflect this by the distance dependence of the combined task
error (Eq. 2 )

!C
2 " t, x

Distance to ball
È

#Ç
Task variability

" !S
2"t#

Ç
Sensory variability

# !M
2 "T $ t, x

Movement Distance
È

#Ç
Task variability

(3)

The sequence-controlled version of the experiment produced
similar results. Five subjects’ motor error bias was small (range
of subjects’ mean motor error, !0.06 to 0.06 cm; median,
!0.04 cm). We used Fitts’ law (Fitts 1954) to describe the
relation between motor error SD with movement time and
distance. This nonlinear relationship was fit by the data across
subjects (median R2 $ 0.86; R2 range, 0.76–0.94). One subject
had difficulty at moving very fast over a long distances, which
resulted in an overall bias of !1.8 cm and a fit value R2 $ 0.18
(subject A in Fig. 4).

Ball catching task experiment

Subjects controlled the horizontal movement of the paddle
with the aim of catching the falling ball and we recorded their
time of switching from perception to action given the ball
landing position (and the paddle width) of the trial. As in the
sensory experiment, the ball was launched with random initial
horizontal velocity. The subject’s task was to catch the ball by
moving the paddle to beneath the ball before the ball reached
the ground (Fig. 1A). To ensure distinct perception and action
phases, as soon as subjects began to move the paddle, the ball
disappeared and moved on its trajectory invisibly. To avoid
any uncertainty about when the ball would hit the ground, the
vertical position of the ball was indicated at all times (even
when the ball became invisible) by a horizontal line passing
through the ball’s center. Thus subjects could choose to ob-
serve for a long period, thereby reducing sensory uncertainty,
but only have a short movement time left that would increase
motor uncertainty. Alternatively, they could choose to move
early to reduce motor variability but with an increased sensory
uncertainty in the ball’s landing location. After the ball hit the
ground, subjects were given feedback about task success. We
also varied the paddle width on each trial to explore how catch
performance depends on paddle width.

Performance varied across subjects. Task error remained low
for some subjects (Fig. 1C, blue crosses), whereas it was initially
large for other subjects; however, over the first 1–250 trials, all
subjects had settled (Fig. 1C, shaded area and line) and their task
error was near to the optimal task error achieved by using optimal
transition times (Fig. 1C, black line). The least accurate subject
caught on average 50% of the balls, whereas the most accurate
subject caught 69% of the balls (median, 59%).

The actual switching times depend on the balls’ landing
position. To predict the task performance as a function of both
switching time and ball landing position, we constructed two-
dimensional variability surfaces for both sensory variability
!C

2 "x, t# and motor variability !M
2 "x, t#. Because sensory vari-

ability is independent of the landing location of the ball, the
variability only varies over the sensing time (switching time)
axis (Fig. 2C). However, movement variability depends on
both movement time (total time – switching time) and distance
to the ball (Fig. 2D). To predict performance on the catching
task, we can add these two variability surfaces to obtain the
combined task error variability !C

2 "x,t# (Eq. 2 ). The resulting
task variability surface (Fig. 2E) is characterized by a single
curved error “valley.” The switching times along the minimum
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in the valley represent the optimal switching time curve (Fig.
2E, white line), traced by the switching time which minimizes
task error for a given ball landing position. These values can be
used to predict the switching times for each subject.

Each subject had characteristic sensory and motor variability
surfaces. Correspondingly, their combined task variability sur-
faces (Fig. 3) and switching times varied (Fig. 3, white dots
showing individual trials). Therefore the key feature we are
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trying to predict is the mean switching times for a given target
distance. For each subject, the empirical mean switching time
curve (least square fit of the white dots in Fig. 3 by a 2nd-order
polynomial) and the optimal switching time curves had match-
ing shapes for all 11 subjects (R2 median $ 0.97; R2 range,
0.73–0.99; as can also be seen in the matching curvature of the
black curve and the blue curve in Supplementary Fig. S1).
Switching time curves varied between subjects and ranged
from (averaged across landing positions) 431 to 733 ms. The

variability in trial-by-trial switching times around the mean
switching time curve had an SD (across landing positions) of
130 ) 12 (SE) ms (across subjects). This can also be seen in
Supplementary Fig. S1, where we plot the 95% confidence
intervals (red curves) for the data around the mean switching
time curve (black). The optimal switching time curves were
within the confidence interval of the timing noise around the
mean switching time curves in 96% (median across subjects;
range, 0–100%) of trials. Two of the 11 subjects caused the

FIG. 2. Construction of the task variability surface from the sensory estimation and motor variability experiments. A: the time dependency of the sensory error
(means ) SE) is fitted by square root power-law for each of the 11 subjects. B: the time- and position-dependent motor error is fitted by Fitt’s law; here the
time-dependency fit (curves) is shown alone by averaging over all landing positions. A and B show the data (means ) SE) for each of the 11 subjects. The sensory
and motor error SD is converted into variances by squaring. C: the sensory error variance surface is constructed by interpolating the fitted sensory error
relationship for all possible switching times (the switching time corresponds to the time available for sensing) and landing positions. D: the motor error surface
is obtained as in C by using Fitt’s law to interpolate the motor variability SD and squaring the values. Note that in the ball catching experiment, we equate the
movement time of the motor experiment with the remaining task time after switching. We plot the motor error in terms of the switching time t and therefore
the motor error increases in the direction of the switching time axis. E: we assume that sensor and motor error (surfaces) are independent of each other and we
can thus obtain an estimate of the ball catching task variability surface by summing both C and D together. This combined error surface resembles a “river valley”
with a minimum task error curve (white line) that shows the optimum switching time for every ball landing position.

FIG. 3. Switching times and task variability surfaces for all 11 subjects. A–K: each subplot shows the behavior for each subject and the combined variance.
Individual trials of the ball catching experiment are shown as white dots, marking the distance of the paddle’s initial position to the ball’s landing position (i.e.,
the required movement distance) and the chosen switching time. The same color coding scale (log units of variance) is used for all subjects to highlight the
individuality of each subject’s error surface. The task variability surfaces (see text and Fig. 2) are computed from the sum of the sensor and motor error surfaces,
as determined independently for each subject in the sensory and motor estimation experiment. The optimal switching time curve (white curve) lies in the valley
(blue region) of the minimum of the task variability surface. Subjects in A–C, H, and I are naı̈ve members of the laboratory.

1907OPTIMAL PERCEPTION AND ACTION TRADE-OFF ACROSS TIME

J Neurophysiol • VOL 101 • APRIL 2009 • www.jn.org

 o
n
 M

a
rc

h
 2

6
, 2

0
0
9
 

jn
.p

h
y
s
io

lo
g
y
.o

rg
D

o
w

n
lo

a
d
e
d
 fro

m
 

http://jn.physiology.org


large range between 0 and 100%. Their optimum curve was
systematically outside the confidence interval; however, it
matched the curvature of the mean switching time curve. These
two outliers and an additional two suboptimal subjects had
* 50% of the switching times within the confidence bars.

The sequence-controlled version of the experiment con-
firmed the above findings even though it required faster per-
ception and action over longer movement distances (cf. Figs. 4
and 3). The combined task variability surfaces (Fig. 4) and
optimal switching times (white curve) varied as predicted
among subjects. For each subject, the empirical mean switch-
ing time curve (least square fit of the white dots in Fig. 4 by a
1st-order polynomial) and the optimal switching time curves
had matching shapes for all six subjects (R2 median $ 0.98; R2

range, 0.97–0.99). Note, we chose here a first-order polyno-
mial, because subject’s switching times were better fitted than
using the second-order polynomial used for the non-sequence-
controlled version of the experiment. This is probably because
of the weak curvature of the optimal switching time curve in
this much faster version of the experiments. The variability in
trial-by-trial switching times around the mean switching time
curve had an SD (across landing positions) of 61 ) 8 (SE) ms
(across subjects). Switching time curves varied between sub-

jects and ranged from (averaged across landing positions) 231
to 500 ms. The variability of the optimal switching times
(averaged across landing positions) had an SD of 91 ms across
subjects.

We tested if subjects had specific knowledge of their own
individual time- and distance-dependent sensory and motor
variability or were just following a general strategy. For each
subject, we calculated the combined error surface and optimal
switching times of the 121 possible combinations of the 11
sensory and 11 motor error surfaces. We calculated the root
mean square error (RMSE) of the 121 optimal switching times
with the subject’s empirical switching times. We also calcu-
lated the most general measure of each subject’s performance:
the paddle width-dependent catch rates for the 121 possible
combinations of sensory and motor error. The R2 between the
actual catch rate and the optimal catch rate curves is a measure
of how close to optimum a subject performed with respect to
the optimum. Across all subjects, cross-validation showed that
the match between optimal and actual switching times were on
average 6.6% (median, 6.5%) better when using the subject’s
own sensory and motor variability than the average across all
possible combinations. This was further supported by cross-
validation in the sequence-controlled version of the experiment

FIG. 4. Switching times and task variability surfaces for 6 different subjects in the faster and more difficult sequence-controlled version of the experiments
(A–F). Individual trials of the ball catching experiment are shown as white dots, marking the distance of the paddle’s initial position to the ball’s landing position
(i.e., the required movement distance) and the chosen switching time together with the optimal switching time curve (white line). The same color coding scale
(log units of variance) and conventions apply as in Fig. 3. Note how the overall level of the combined error surface is higher in this version of the task than that
one in Fig. 3, reflecting increased difficulty as subjects have to act within higher sensory and motor uncertainties. Note subject A had difficulty in completing
fast movements (* 500 ms) over the full range of possible landing positions. All subjects were naı̈ve.
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with the faster and harder version of the ball catching experi-
ment (6 subjects, 36 possible combinations). Here it was shown
that subjects switching times were on average 10% better
explained by the optimal switching time calculated using the
subject’s own sensory and motor variability than the average
across all possible combinations.

In our task, it is not the switching time that determines
performance per se but the catching of the ball. It is important
to distinguish between subjects choosing an optimal parameter
value and the sensitivity of the behavioral task (ball catching
performance) that is being optimized to variations in the
parameter. Therefore to evaluate whether subjects are optimal,
we need to ultimately measure how close they are to the
optimal catch probability and not how close the switching
times are to the optimal switching times. This is particularly
important because the valley of the combined error surface in
Figs. 3 and 4 (blue regions) is relatively shallow so that
subjects can show variation in switching times in this region
without degrading performance. The topology of the error
surface implies that varying switching time around the opti-
mum will affect catch performance little, because the level of
task error remains close to the minimum level and within the
width of three to four paddles, and subjects had little incentive
or need to exactly choose the optimum switching time. Thus to
avoid penalizing switching times at levels close to the mini-
mum and to underweight switching times at task error levels
high above the optimum, we measured the proportion of trials
where combined task error was within a certain level of the
lowest possible task error SD at the optimal switching time (the
relevant parameter with respect to catch performance). Sub-
jects behaved such that 27% (median; range, 12–40%) of trials
had switching times within 2.5% of the minimum achievable
task SD. Moreover, 61% (median; range, 23–73%) of trials
were within 10% of the minimum achievable task SD. Thus
subjects showed near optimal performance in choosing switch-
ing times with respect to the minimum of the combined task
variability surface, thus maximizing task performance.

Using the optimal switching time relationship (Eq. 2 ), we
can predict the individual catch performance of each subject. In
the ball catching task, we varied the width of the paddle used
to catch the ball from trial to trial, which shows a nonlinear
relationship between catch performance (i.e., the chance to
catch a ball) and paddle width (Fig. 5, circles in the subfigures
for each subject). We developed a probabilistic model of task
performance that accounts for each individual’s variability in
the task. We modeled how likely it is that the subject’s paddle
will be under the ball at touch down by using the independently
measured sensory and motor variability to obtain a Gaussian
distribution (zero mean, variance equal the combined task
variance as computed by Eq. 2 ) of paddle positions under the
ball. The area under the Gaussian distribution half a paddle’s
width to the left and right of its center corresponds to the catch
probability. We can predict the catch performance’s depen-
dence on the paddle width for all subjects Fig. 5 (black curve)
regression between predicted performance (using actual
switching times for each trial) and actual performance for four
paddle widths: R2 median $ 0.99; R2 range, 0.96–0.99. Sim-
ilarly, we can also use optimal switching times for each trial to
predict the optimal catch performance and find very similar
results (R2 median $ 0.98; R2 range, 0.94–0.99). Therefore
our prediction of catch performance confirms that we can

model the combined task error as a sum of Gaussian distrib-
uted, zero mean sensory and motor errors, which variance is
given by the landing position and switching time used. More-
over, the catch probability analysis shows that subjects choose
to act very close to the minimum of the task variability surface.
These results confirm that, because the task variability surface
is shallow near the optimal switching time, subjects can
achieve near optimal catch performance despite their timing
variability around the mean switching time curve.

Similarly to the above cross-validation of switching times,
we tested whether random combinations of sensory and motor
variability surfaces could predict catch performance better than
using the subject’s own sensory and motor variability surfaces.
Across all subjects, the subject’s actual catch rate matched the
optimal catch rate for the subject’s own variability surfaces on
average 2.8% (median 5%) better than calculations using other
combinations of sensory and motor variability surfaces. This
translates into an average of 5.4% (median 7.4%) more balls
caught using the subject’s own variability surfaces compared
with other subject’s surfaces. This is a substantial advantage in
the final score (the worst and best subjects’ catch score differed
by only 19%). Similarly, in the sequence-controlled experi-
ment (which used a single paddle width of 2 cm), the catch rate
was predicted on average 7% better by using the subject’s own
surfaces. Thus, on average, subjects’ own sensory and motor
uncertainties provide a better explanation of their behavior:
their switching times are closer to the optimal switching times
and their actual catch rate was closer to the optimal catch rate
than other combinations of sensory and motor surfaces.

D I S C U S S I O N

We developed a ball catching task in which subjects can
choose when to switch from a distinct perception phase to an
action phase. Because the total task time was fixed, increasing
the perception phase reduced the time available for movement.
We used two additional and separate experiments to measure
the variability in sensing and variability in moving as a func-
tion of time. Using this data, we developed a full probabilistic
model of the perception-action task, which allowed us to
predict the optimal behavioral decision, when to start moving,
as well as the overall performance in the task, the probability
of catching the ball. We found that different subjects had
idiosyncratic time-dependent variability in both perception
and action; however, we were able to predict individual
performance and switching times, showing that subjects
behaved close to optimal. We showed that, by selecting the
minima of the summed sensory and motor variability, we
could account for each subject’s individual switching times
and catch performance. By following this computational
strategy, subjects behave statistically optimal in the maxi-
mum-likelihood sense.

Our pure perception task measured endpoint estimation error
of the ball’s landing position as a function of time for which the
ball was visible. A ball’s parabolic trajectory is a composition
of an object falling with constant acceleration vertically and
moving with constant speed horizontally. Several previous
studies have shown that subjects are accurate at estimating the
location of objects moving with constant horizontal speed
behind an occlusion (Brouwer et al. 2005; Brown et al. 2007)
or estimating the time of contact of occluded objects falling
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under gravity-like acceleration (Gottsdanker et al. 1961; In-
dovina et al. 2005; Rosenbaum 1975; Zago et al. 2004). These
studies showed that subjects perform poorly when predicting
target motion under either horizontal acceleration or under
vertical constant velocity motions (Brouwer et al. 2002; Zago
et al. 2004). Few studies looked at the estimation of parabolic
trajectories (Brouwer et al. 2006; Oudejans et al. 1997; Sax-
berg 1987). We measured here the extrapolation of parabolic
trajectories in the time domain, quantified by sensory endpoint
estimation error SD, which was well fit by an inverse square
root of time and increasing sensory precision over a period of
more than a second.

Our pure motor task measured endpoint estimation error of
the paddle’s position as a function of allowed movement time
and the indicated ball landing position. Because of the veridical
experimental setup, moving the paddle was comparable to the
hand’s reaching movement for the ball (Gordon et al. 1994).
Accordingly, we were able to use movement time and the
distance from the paddle’s starting position to the target posi-

tion to fit the movement error using Fitt’s law (Fitts 1954). Our
predictions for the combined perception-action task are solely
based on measurements made in independent experiments that
measured the individual relationships of sensor and motor error
on time. We applied these predictions to the ball catching task,
enabling us to assess the full behavioral loop by a direct
measure of behavioral performance.

The fact that we can model the catch probability accurately
in 7 of 11 suggests that these subjects behave optimally in
choosing their switching times. Moreover, other sources of
variability beyond the measured sensory and motor variability
are negligible or their catch rate would have been much lower
than optimum. This is true of any extra source of variability
present in the combined task than in the sum of sensory and
motor variability.

Four subjects have partially somewhat lower catch perfor-
mance than optimum. This could be because of several factors,
such as positive correlations between sensory and motor error,
as well as impact of time-dependent sources of variability that

FIG. 5. Catch probability given paddle width (data pooled over all landing positions) for all 11 subjects (arranged to correspond with Fig. 3). A–K: each plot
shows the optimal catch performance achieved by using optimal switching times (black curve) and subject’s actual catch performance (circles) for each paddle
width.
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we do not account for in our model. For example time-
dependent motor variability could be higher in the ball catching
experiment because of the limited amount of time to form a
motor plan. Our motor variability experiment incorporates both
movement variability from, for example, signal-dependent mo-
tor noise (Harris and Wolpert 1998), as well as variability
resulting from motor planning (Churchland et al. 2006; van
Beers et al. 2004), when there is no time constraint on motor
planning. We assume that the contribution of motor planning
variability to overall motor variability is similar in the motor
variability experiment and the ball catching experiment, be-
cause the movement is quite simple.

A recent study (Battaglia and Schrater 2007) suggested a
similar effect of sensor-motor timing trade-offs for a random
dot pointing task. In their experiment, random dots clustered
around an invisible target that was on an arc a fixed distance
from the initial hand position. The sensory information
changed discretely with the appearance of new dots, unlike our
task where sensory information changed continuously. More-
over, the movement distance was always fixed; therefore, it
was not possible to test if subjects had full knowledge of the
motor variability as a function of both time and distance. In
addition, the task was quite unnatural (with time indicated by
an hourglass), and the predicted switching times were weakly
correlated with mean empirical switching times (subject’s
median R2 $ 0.79; R2 range from 0.56 to 0.93 based on 3 mean
switching times conditions measured per subject; Fig. 7 in
Battaglia and Schrater 2007, calculated from data kindly pro-
vided by Peter Battaglia) compared with our match between
the optimal and empirical mean switching time curve (subject’s
median R2 $ 0.97; R2 range, 0.73–0.99, based on 350 mean
switching time conditions measured per subject). In contrast,
we show here that subject’s integrate the nonlinear relationship
(measured at 350 different positions) between sensing time,
movement time, and movement distance such that depending
on the estimated ball landing position switching times vary
accordingly along a continuous optimal switching time curve
(as predicted by our ideal actor) instead of specific, discrete
switching times. Over trials, the task error (distance between
ball landing position and paddle center) was low from the
beginning of the experiment for some subjects or decreased
within the first 250 trials to near optimal levels (see Fig. 1C,
blue crosses). Correspondingly, the ball catch performance was
stable after 250 trials (Supplemental Fig. S2). This suggests
that subjects could not have probed the relationship between
switching time, movement distance, and catch performance
sufficiently to learn the optimal switching times in dependence
of movement distance.

Trading off multiple sources of uncertainty has been studied
in pure perceptual tasks. It was shown that humans integrate
synchronously presented sensory cues to form a statistically
optimal estimate: each sensory source is weighted by the
inverse of its uncertainty (the variance of the single cue
estimation), such as combining information from vision to
determine object width (Ernst and Banks 2002) and depth
(Hillis et al. 2004; Jacobs 1999; Knill 2003), vision and hearing
to estimate position (Alais and Burr 2004), and proprioception
and vision to locate the hand (van Beers et al. 1996; Sober and
Sabes 2005; van Beers et al. 1999). However, unlike these
existing sensory studies assumed, we mostly act in natural
settings, where sources of sensory information and movements

occur asynchronously—as in our perception-action task. We
show here that subjects must have some form of explicit
knowledge of their sensory and motor error as a function of
time (and distance) because they are able to combine percep-
tual and action uncertainty (asynchronously) across time.

It was previously shown that in trading off reward and
uncertainty in pure action tasks, humans choose near-optimal
strategies when planning their movement and can base their
selection in an explicit reward-and-punishment framework
(Trommershauser et al. 2006). In such a framework, subjects
were able to compensate artificially induced changes of sensor
and motor uncertainties by the experimenter (Trommershauser
et al. 2005). Our study presents a novel combination of per-
ception and action tasks. We show that by forcing a trade-off
between sensor and motor uncertainty in natural tasks, humans
make use of knowledge about time dependence in their natural
sensory and motor uncertainty to make an optimal decision
about when to start moving such as to maximize reward
(number of caught balls).

Our ball catching task is a natural world task with distinct
perception and action stages. We showed that subjects have
knowledge of how their sensor and motor error change as a
function of time and are able to decide when to move such as
to minimize the combined task error. The decision when to
move is not straightforward, because motor error depends on
how far one has to move in a nonlinear way, suggesting that
subjects have an explicit representation of the sensor and motor
error as functions of time. Although subjects mean switching
time curves were highly correlated with their predicted optimal
switching time curves (median R2 $ 0.97), subjects showed
trial-by-trial variability of & 130 (SD) ms (median across
subjects) around their mean timings. Variability in timing
could result from either a subject’s uncertainty in the shape of
the task variability surface, the precision with which subject’s
could time switching, or a mixture of both. Studies that
measure timing variability in the initiation of discontinuous,
i.e., nonperiodical, hand movements report timing precisions of
65–90 (SD) ms in similar time intervals (data extracted from
Spencer et al. 2003). Our findings were similar in the faster
sequence controlled version of the experiments, where the task
error valley was narrower and subject’s timing precision some-
what higher (cf. spread of white dots and the blue regions in
Figs. 3 and 4). These findings suggest that the majority of
switching timing variability observed here can be explained by
the baseline precision to initiate an action at a desired instant in
time.

Subject task performance can be explained by the variability
of their sensory and motor systems and not their individual
strategy chosen, because across the catch performance range
(50–69%) subjects chose near optimal switching times. We
showed that cross-validation (i.e., randomly interchanging the
predicted variability surfaces from sensory and motor experi-
ments across subjects and the chosen switching times in the
combined experiments) led to less optimal subject behavior,
suggesting that subjects shaped their responses based on their
specific time- and distance-dependent sensory and motor un-
certainty and not on some general strategy. Moreover, subjects
switching time variability decreased by 29% as the speed of the
task increased by 31%, suggesting that subjects were aware
that the size of the optimal switching time valley had decreased
correspondingly (cf. Figs. 3 and 4). Individual’s knowledge of
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their task variability surface is important in real world tasks
with dynamic environments. This occurs when we have to
distribute the time of visual attention allotted to various direc-
tions around us, for example, when moving in complex terrains
or in reducing motor error in grasping and estimating grasp
relevant object properties. A similar trade-off of perception
versus action could apply to saccading eye movements and the
estimation of where to look next, as during a saccade visual
perception, is blocked.

Our quantitative perception-action framework provides a
novel approach to study speed–accuracy trade-offs, allowing
for straightforward manipulation by deciding when to start
moving and stop sensing. Moreover, we are able to quantita-
tively predict the subject’s performance in terms of their actual
task instruction (catching as many balls as possible). These
characteristics make our sensorimotor task directly applicable
to clinical testing of motor disorders or for experiments of
decision-making in time and allow novel ways to probe sensor
and motor speed–accuracy trade-offs in conjunction. Our task
lends itself to identify and study the underlying neuronal
mechanisms that process such decisions, for example, by
perturbing the activity of selected neuronal populations and
quantifying how catch performance and switching times are
affected. We note that the performance in our ball catching
game was explained by the subject’s sensory and motor un-
certainty and did not depend on specific movement strategies;
this may suggest that, in related sports disciplines, technique is
ultimately less important than simply having the lowest possi-
ble (innate) sensory and motor uncertainties.
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