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Glossary 

Complement: The complement system is an essential component of the innate immune system, which is activated on recognition of microbial
 

patterns, cellular abnormalities or modified extracellular molecules. This proteolytic cascade tags the activating structure for elimination and at the
 

same time elicits an inflammatory response, thereby recruiting additional immune cells.
 

Opsonization: The process whereby deposition of molecules, such as activation products of the complement cascade, on the surface of a target
 

marks that target for recognition and uptake by a phagocytic cell.
 

Golgi-Cox method: A histological method based on metallic impregnation of neurons that allows distinct visualization of cell soma, axons,
 

dendrites and spines. 

Of note, a recent study that compared 
complement component expression 
and activation in the hippocampi of 
patients with multiple sclerosis corro

borated this notion (Michailidou 
et al., 2015). In accordance with the 
findings of Jü rgens and co-workers, 
synaptic density was decreased in 
demyelinated but also in myelinated 
hippocampi compared to control 
brains. Additionally, the complement 
components C1q and the C3 activa

tion products localized to synapses 
that were within reach of microglial 
cellular processes, implicating active 
synaptic elimination of complement-

tagged synapses in multiple sclerosis. 
Taken together, these results indi

cate that synaptic loss occurs widely 
and independently of demyelination 
and axonal degeneration in the grey 
matter of multiple sclerosis brains. 
While the pathophysiology remains 
enigmatic, there is circumstantial evi

dence that continuous and diffuse 
activation of the classical complement 
cascade might be involved in this pro

cess, which could drive neuronal loss 
and disability progression. This 

exciting finding warrants additional 
mechanistic investigations. 

Manuel A. Friese 
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Cerebellar damage limits reinforcement
 
learning 

This scientific commentary refers to 
‘Effective reinforcement learning fol

lowing cerebellar damage requires a 
balance between exploration and 
motor noise’, by Therrien et al. 
(doi:10.1093/brain/awv329). 

An exciting challenge for research in 
motor learning is to disentangle the 

multiple processes involved, and to 
tie these down to distinct neural sys

tems. About 17 years ago, Doya pro

posed that the cerebellum, basal 
ganglia and cerebral cortex were sep

arately responsible for supervised 
learning, reinforcement learning, and 
unsupervised learning, respectively 
(Doya, 1999, 2000). Supervised 

learning is driven, unsurprisingly, by 
signals provided by a ‘supervisor’ and 
is typically equated with error-based 
learning: after an action, an error in 
performance is processed, and subse

quent actions are adjusted to try to 
minimize the error. Reinforcement 
learning is driven by rewards and pun

ishments: exploratory actions are tried 
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out and each action’s outcome is eval

uated; learning aims to maximize the 
value of future action choices. 
Unsupervised learning occurs in the 
face of repeated experience of the en

vironment, and generates a mapping 
of its statistical regularities: it can be 
driven by Hebbian learning so that, 
for example, similar sensory events 
become associated with one another. 
In the motor domain this can equate 
to yet another form of learning, use-

dependent learning, where there is a 
bias to produce actions more similar 
to previous ones. For many years, 
these learning processes were thought 
of as functionally and anatomically in

dependent. However, huge efforts are 
now being made to understand how 
these various processes interact. In 
this issue of Brain, Therrien, Wolpert 
and Bastian have added to these 
efforts by testing and modelling how 
patients with cerebellar ataxia differ 
from healthy controls in performing 
error- and reinforcement-learning 
tasks (Therrien et al., 2015). Using a 
mechanistic model, they show that op

timal learning with reinforcement feed

back requires subjects to balance the 
variability in their exploration of the 
task with their uncontrollable motor 
variability (noise). While patients 
with ataxia showed normal levels of 
exploration variability and were able 
to learn through reinforcement feed

back, their high levels of motor noise 
limited the extent of this learning. 

In more detail, participants per

formed a reaching task that required 
them to adapt to a visuomotor dis

placement, such that visual or 
reward feedback on the reaching 
movement was displaced from the 
hand’s true position. In two related 
experiments, healthy young adults, 
or patients with cerebellar ataxia 
and age-matched controls either 
received error feedback at the end of 
each movement (‘error-based feed

back’ - see Glossary); or they received 
a reward signal indicating good per

formance if they landed close to the 
target (termed ‘open-loop’, a condi

tion only tested on the younger 
group). In a third condition, they 
were rewarded if they performed 

Figure 1 The basal ganglia (green) and cerebellum (blue) have historically been 
associated with independent roles in reinforcement- and error-based learning, 
respectively. However, the work of Therrien et al. (2015) suggests that cerebellar damage 

limits reinforcement learning. Could the direct connections between the cerebellum and basal 

ganglia reported by Boston and Strick (2010) provide an anatomical explanation for this 

result? Figure adapted from Doya (2000). 

better than the average of the last 
10 movements (‘closed-loop’ reward 
feedback, as the feedback reflected 
prior performance). Participants with 
ataxia and healthy controls showed 
learning under both error-based and 
reward feedback conditions. But 
while reward feedback led to near 
perfect retention of the learned behav

iour during a post-learning test phase, 
error feedback learning was not re

tained and decayed in the test phase. 
These differences between error and 
reward feedback are in line with pre

vious findings (Shmuelof et al., 2012). 
The normal learning with error feed

back in the ataxia group is, at face 
value, inconsistent with Doya’s 
theory. However, the complete lack 
of retention of this adaptive response 
led Therrien et al. to suggest that the 
apparent learning may in fact have 
been a result of non-cerebellar online 
correction processes (Tseng et al., 
2007). 

The key finding of this paper, how

ever, is that patients with ataxia did 
show substantial learning and reten

tion under reinforcement (reward) 
conditions. With support from a 
mechanistic model of the learning 
process, Therrien et al. suggest that 
reinforcement learning depends on a 
balance between exploration variabil

ity and motor noise. While the pa

tients with ataxia showed similar 

levels of exploration variability to 
age-matched controls, their increased 
level of motor noise meant they learnt 
less through reinforcement. 

This paper is interesting, and its con

clusions are in line with other work 
suggesting that one consequence of 
cerebellar damage is degradation of 
the brain’s ability to estimate the 
state of the motor system, i.e. loss of 
predictive knowledge regarding the 
outcome of motor commands that 
would normally be used to update a 
representation of the motor system’s 
state (Miall et al., 2007; Tseng et al., 
2007). However, the modelling work 
did seem to predict a relationship be

tween exploration noise and motor 
noise that was only an approximate 
match to the group results. In fact, 
none of the participants fell within 
the ‘sweet spot’ that would produce 
optimal reinforcement learning. This 
suggests that other unknown factors 
may limit exploration noise, or (as 
with the ataxia group) covertly in

crease motor noise. 
There is also a need for illumination 

of the neural mechanism that under

pins the relationship between cerebel

lar-dependent motor noise and 
reinforcement learning. Recent work 
has provided anatomical evidence for 
direct bidirectional links between the 
cerebellum and the basal ganglia (Fig. 
1) (Bostan and Strick, 2010). It is 
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Glossary 

Error correction: Feedback of errors can be used to directly improve performance. In supervised or error-based learning the error vector gives 

both the magnitude and the direction of the error, and the learning system then shifts subsequent performance in the opposite direction, with the 

intention to reduce the error on subsequent trials. 

Hebbian learning: In 1949 Donald Hebb proposed that if a neuron is causally involved in activating one of its neighbours, then some metabolic or 

growth process will make it more effective in activating that neighbouring cell. Although this has been reduced to the statement that ‘cells that fire 

together, wire together’, the causal chain from one cell to the next is important. 

Open and closed loops: If the outputs of a dynamical system affect its inputs, the system can be called a ‘closed loop’, otherwise it is an ‘open 

loop’. 

Reinforcement learning: The process by which an animal or artificial system can learn to optimize its behaviour using rewards and/or punish

ments. The value of actions reinforces those behaviours that maximize reward or minimize punishment. However, the feedback reward or 

punishment does not dictate how to improve performance. 

State estimation: Dynamical systems transform inputs into outputs, but the outputs do not necessarily fully reflect the state of the system, or do 

not provide feedback about the state variables that must be controlled. An estimate of the system’s state, updated based on its last known state and 

on inputs, can provide valuable ‘model based’ control. 

possible that the cerebellum could pre

dict the sensory state of an action and 
feed it forward to the basal ganglia, 
which in turn could estimate the 
value of the new state through re

inforcement processes. Without the 
cerebellum, predicted action outcomes 
may be poorly represented, or even 
unknown, and so linking them to 
reward values would be more difficult. 
This increased (motor) noise in pre

dicting movement outcomes could 
lead to greater uncertainty within the 
basal ganglia with respect to reward-

based predictions and thus a reduced 
ability to adapt behaviour. However, 
another thing to mention from the 
Therrien et al. study is that although 
their patients with ataxia showed 
almost double the motor noise of 
age-matched controls, the differences 
in reinforcement learning were small. 
This suggests that the cerebellum may 
not have a dominant influence on 
basal ganglia-dependent reinforcement 
learning. What the reverse connections 
from basal ganglia to cerebellum 
might convey is less clear. One possi

bility, driven by recent evidence that 
reward and punishment differentially 
influence motor learning (Galea et al., 
2015), is that the reinforcement signals 
might modulate the cerebellum’s sensi

tivity to incoming error signals. In 
other words, the basal ganglia might 
prime the cerebellum to weight its pre

dictions (or to update its forward 
models), based on predicted reward 
or punishment. These bilateral connec

tions may thus ensure that the basal 

ganglia and cerebellum work together, 
so that reward predictions and state 
estimates are both tuned to reflect con

fidence levels in each prediction. 
We suggest that a fruitful way to 

test these interactions would be to 
manipulate exploratory and motor 
noise at several different levels in the 
system and examine their effects on 
the tasks and model described by 
Therrien et al. One could inject 
motor noise peripherally, by electrical 
stimulation of the muscles during 
action, or centrally, for example by 
transcranial random current stimula

tion over the motor or premotor 
cortex. One might inject variability 
into the state estimation process by 
adding noise to the feedback after 
each action, either visual or proprio

ceptive, or by testing participants with 
sensory loss. And one might mimic 
the effects of poor state estimation 
in the cerebellum by transcranial elec

trical or magnetic stimulation (Miall 
et al., 2007). The goal would be to 
understand in which scenarios motor 
noise has a detrimental effect on re

inforcement learning. If increased 
motor noise must originate from the 
cerebellum, this may indicate that the 
direct connection from the cerebellum 
to the basal ganglia plays a specific 
role in motor-based reinforcement 
learning. 

Can one also manipulate explor

ation noise? Until recently, there was 
no direct evidence that reward-based 
exploration during a motor task was 
dopamine- or basal ganglia-

dependent, despite much speculation 
(Izawa and Shadmehr, 2011). 
However, it has now been shown 
that patients with Parkinson’s disease, 
in whom dopamine levels are 
reduced, exhibit impaired exploration 
variability during a motor reinforce

ment task (Pekny et al., 2015). 
Therefore, a strong prediction is that 
patients with Parkinson’s disease 
would show impaired exploration 
variability but normal motor noise 
within the current task. This could 
also be tested in a more sensitive 
manner with drug studies that either 
block D1/D2 dopamine receptors 
(haloperidol) or specifically block D2 
receptors (sulpiride). Finally, there 
might be exciting opportunities 
through the use of deep brain stimu

lation to centrally block reinforce

ment learning or to add exploration 
noise. One idea would be to compare 
patients with deep brain stimulators 
implanted either in the basal ganglia 
(Parkinson’s disease) or thalamus (for 
dystonia). As the thalamus provides a 
link between the cerebellum and basal 
ganglia, one might predict that basal 
ganglia deep brain stimulation would 
manipulate reinforcement learning 
through changes in exploration vari

ability, whereas thalamic deep brain 
stimulation may alter reinforcement 
learning through changes in motor 
noise. 
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What lies beneath grey matter atrophy in 
multiple sclerosis? 

This scientific commentary refers to 
‘Cortical atrophy patterns in multiple 
sclerosis are non-random and clinic

ally relevant’, by Steenwijk et al. 
(doi:10.1093/brain/awv337). 

Over the last 20 years, there have been 
remarkable advances in our under

standing of pathogenic mechanisms in 
multiple sclerosis, particularly those re

sponsible for relapses and remissions. 
Over the same period a series of in

creasingly effective treatments have 
become available that suppress re

lapses. However, there has been a con

spicuous lack of success in treating 
progressive multiple sclerosis, which 
most people with the condition even

tually develop, and which is associated 
with the greatest disability. This has 
led to a reappraisal of pathological 
processes underlying progressive mul

tiple sclerosis, and the recognition 
that pathology is more extensive and 
complicated than formerly thought. In 
this issue of Brain, Steenwijk and co

workers look specifically at cortical at

rophy in patients with long-standing 
multiple sclerosis, and reveal that 
such atrophy occurs in largely non

random patterns (Steenwijk et al., 
2016). 

Previously, a commonly held view 
of multiple sclerosis was of a multi-

focal and multi-phasic immune-

mediated white matter inflammatory 
demyelinating disorder, and indeed 
the suppression of such a process 
has underpinned the major progress 
in disease-modifying treatment to 
date. However, it is now abundantly 
clear that in progressive multiple 
sclerosis, demyelinating lesions may 
be as extensive in grey matter as 
they are in white matter, and that 
there is substantial and widespread 
neuro-axonal loss, not only in white 
matter lesions but also in normal-

appearing white matter, and in both 
the cortical and deep grey matter. It is 
also clear that grey matter pathology 
is present in early relapsing-remitting 
multiple sclerosis and increases with 
time. Neuro-axonal loss is now 
thought to be responsible for a 
major proportion of irreversible pro

gressive disability in multiple scler

osis, but its causes are poorly 
understood, particularly when it 
occurs in the grey matter. 

Brain atrophy in multiple sclerosis, 
as measured during life by MRI, 
is likely to reflect neuro-axonal loss 
(although other factors that can 
affect brain tissue volumes should be 
borne in mind, especially when assess

ing short-term changes). Loss of brain 
tissue does not occur uniformly, and 
in progressive multiple sclerosis it is 
most apparent in brain grey matter, 
affecting some cortical and deep grey 
matter regions more than others 
(Bendfeldt et al., 2011). In vivo 
MRI-clinical correlation studies have 
identified significant associations of 
grey matter atrophy with cognitive 
impairment, physical disability and 
progressive multiple sclerosis that are 
independent of associations with 
other imaging abnormalities, such as 
white matter lesion load. All-in-all, 
there are compelling reasons to try 
to better understand the mechanisms 
of grey matter atrophy and the 
neurodegeneration that it reflects. 

In this issue of Brain, Steenwijk and 
colleagues report on their work 
looking at patterns of cortical grey 
matter atrophy in multiple sclerosis 
(Steenwijk et al., 2016). They used 
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